• Title/Summary/Keyword: Shape Memory effect

Search Result 217, Processing Time 0.035 seconds

A study on dynamic behavior of bidirectional SMA Actuator with forced-cooling (강제공냉 차동식 형상기억합금 액츄에이터의 동작특성에 관한 연구)

  • 정상화;김현욱;차경래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.47-52
    • /
    • 2003
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research on dynamic characteristics is very deficient. In this paper, the helical spring are fabricated with NiTi SMA wire of high resistivity. The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA is analyzed. Also, bidirectional actuator was fabricated and experimented fir its performance.

  • PDF

A study on the Improvement of the Performance of Biodirectional SM Actuator (NiTi 형상기억합금을 이용한 차동식 액츄에이터의 동작성능 향상을 위한 연구)

  • Jeong, Sang-Hwa;Kim, Hyon-Uk;Cha, Kyoung-Rae;Song, Suk;Shin, Byung-Su;Lee, Kyoung-Hyoung
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.346-351
    • /
    • 2003
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research on dynamic characteristics is very deficient. In this paper, the helical spring are fabricated with NiTi SMA wire of high resistivity. The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMT is analyzed. Also, bidirectional actuator was fabricated and experimented for its performance

  • PDF

Relationship between Machining Characteristics & Current Efficiency in Electro Chemical Machining of Ni-Ti Shape Memory Alloy (Ni-Ti 형상기억합금의 전해가공에서 전류효율과 가공특성의 관계)

  • 김동환;강지훈;박규열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.320-325
    • /
    • 2000
  • This study was performed to investigate the electro-chemical-machining (ECM) characteristic of Ni-Ti Shape Memory Alloy (SMA). From the experimental results, we could gain optimal electro-chemical conditions to bound with lesser machining effect and better surface roughness than any other machining methods to workpiece at the same time. At these conditions, current efficiency was, for especially ECM working of Ni-Ti SMA, approximately 100% and high frequency pulse current was detected.

  • PDF

A Manufacturing of NiTi Shape Memory Alloy by Combustion Synthesis (연소합성에 의한 NiTi 형상기억 합금의 제조)

  • Shon, I.J.;Kim, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.2
    • /
    • pp.120-126
    • /
    • 1995
  • The effects of heating rate on the combustion temperature, the ignition temperature, the microstrurcture and the shape memory ability of products formed by combustion were investigated. The ignition temperature decreased with increasing heating rate. Combustion temperature and ${\Delta}T$(difference temperature between the ignition temperature and the combustion temperature) increased with increasing heating rate. The grain size of the product increased with increasing heating rate. Combustion synthesis did not completely occur below the heating rate of $10^{\circ}C/min$. NiTi intermetallic compound was completely formed at the heating rate of $600^{\circ}C/min$ and the product by combustion method had a good shape memory effect.

  • PDF

형상기억합금의 특성 및 응용

  • Lee, In;Yang, Seung-Man
    • Journal of the KSME
    • /
    • v.44 no.6
    • /
    • pp.34-39
    • /
    • 2004
  • 형상기억합금(SMA : Shape Memory Alloy)은 일반적인 금속이나 합금에서는 찾아볼 수 없는 형상기억효과(shape memory effect)와 초탄성 (superelasticity) 거동을 보이고 있다. 이러한 특성은 1951년에 금-카드뮴(Au-Cd) 합금에서 처음으로 발견되었으며, 1963년에 미국 해군병기연구소(Naval Ordnance Laboratory)에서 니켈-티타늄 (Ni-Ti) 합금에서 형상기억효과를 발견한 후로 널리 상용화되었다. 니티놀(nitinol)이라고 불려지는 니켈-티타늄 계열의 형상기억합금은 단위 부피당 많은 에너지를 낼 수 있고, 내 부식성(corrosion resistance)과 생화학적 적합성(bio-compatibility)이 뛰어나다. 또한 100,000사이클 이상의 긴 사용수명을 갖기 때문에 작동기(actuator)로서 우수한 특징을 갖는다. (중략)

  • PDF

Experimental Study of SMA Composite Characteristics (SMA 복합재료 특성 실험 고찰)

  • Kim, Hyeong-Jin;Kim, Jae-Hoon;Kang, Ki-Weon;Jung, Sung-Kyun;Park, Young-Chul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.225-230
    • /
    • 2006
  • We have investigated mechanical behaviors of composite materials containing Ni-Ti shape memory alloy(SMA) wires by performing several experimental methods. In this study, several sample specimens were fabricated in order to perform photo-elasticity tests and impact tests under various test conditions for investigating the mechanical behaviors of the SMA composite materials. From the test results, the shape memory effect of SMA in composite materials can be considered as one of possible ways in controlling crack growth in the materials.

  • PDF

A training of SMA wire for stabilization of two-way behaviors and actuator application (형상기억합금 와이어의 거동 안정화를 위한 트레이닝과 작동기 응용)

  • Kim, Sang-Haun;Yang, Sung-Pil;Cho, Maeng-Hyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.924-927
    • /
    • 2007
  • In this study, adaptation of two-way shape memory effect of SMA wire to the actuator is examined. Therefore the SMA characteristics which are training, material properties, response time at different thermal cycling rates are tested. During training, permanent deformation is accumulated till a certain number of cycle and then saturated. The amount of two-way strain is unchangeable over all cycle and the slope of strain(or stress)-temperature curve is slower as the increase of applied stress. The rate effect is observed resulted from the thermal distribution which heating profile differs from cooling as thermal cycling time. Using the estimated SMA properties, an experimental test for the simple smart wing is performed.

  • PDF

Experimental Test Numerical Simulation of SMA Characteristics and Device verification (형상기억합금 수치해석을 위한 특성 실험 및 작동기 응용)

  • Kim, Sang-Haun;Choi, Hyun-Ho;Cho, Maeng-Hyo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.145-148
    • /
    • 2005
  • In this study, adaptation of two-way shape memory effect of SMA wire to the actuator is examined . Therefore the SMA characteristics which are training, material properties, response time at different thermal cycling rates are tested. During training, permanent deformation is accumulated till a certain number of cycle and then saturated. The amow1t of two-way strain is unchangeable over all cycle and the slope of strain(or stress)-temperature curve is slower as the increase of applied stress. The rate effect is observed resulted from the thermal distribution which heating profile differs from cooling as thermal cycling time. Using the estimated SMA properties, an experimental test for the simple smart wing is performed.

  • PDF

A Study on the Microscopic Damage Behavior and the Damage Position Evaluation of TiNi/Al6061 Share Memory Alloy Composite (TiNi/A16061 형상기억복합재료의 미시적 손상거동과 손상위치측정에 관한 연구)

  • Lee, Jin-Gyeong;Park, Yeong-Cheol;Gu, Hu-Taek;Lee, Gyu-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1787-1794
    • /
    • 2002
  • TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite by occurring compressive residual stress in the matrix using shape memory effect. In order to generate compressive residual stress in TiNi/Al6061 shape memory alloy(SMA) composite, 1, 3 and 5% pre-strains were applied to the composite in advance. It was also evaluated the effect of compressive residual stress corresponding to the pre-strain variation and the volume fraction of TiNi alloy. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain in TiNi/Al6061 SMA composite. The results of the microscopic damage evaluation of TiNi/Al6061 SMA composite under various pre-strain using AE technique can be divided into three stage corresponding to the AE signals. AE counts and events were useful parameters to evaluate the fracture mechanism according to the variation of pre-strain. In addition, two dimensional AE source location technique was applied for monitoring the crack initiation and propagation in composite.