• 제목/요약/키워드: Shape Memory Alloys(SMA) Sheet

검색결과 3건 처리시간 0.018초

Smart Honeycomb Sandwich Panels With Damage Detection and Shape Recovery Functions

  • Okabe, Yoji;Minakuchi, Shu;Shiraishi, Nobuo;Murakami, Ken;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • 제17권1호
    • /
    • pp.41-56
    • /
    • 2008
  • In this research, optical fiber sensors and shape memory alloys (SMA) were incorporated into sandwich panels for development of a smart honeycomb sandwich structure with damage detection and shape recovery functions. First, small-diameter fiber Bragg grating (FBG) sensors were embedded in the adhesive layer between a CFRP face-sheet and an aluminum honeycomb core. From the change in the reflection spectrum of the FBG sensors, the debonding between the face-sheet and the core and the deformation of the face-sheet due to impact loading could be well detected. Then, the authors developed the SMA honeycomb core and bonded CFRP face-sheets to the core. When an impact load was applied to the panel, the cell walls of the core were buckled and the face-sheet was bent. However, after the panel was heated over the reverse transformation finish temperature of the SMA, the core buckling disappeared and the deflection of the face-sheet was relieved. Hence the bending stiffness of the panel could be recovered.

Ti 적층을 이용한 Ni-Ti 계 판재의 양방향 형상기억 기능성 개선 연구 (Enhancing the Two Way Shape Memory Functionality of Ni-Ti Sheet through the Deposition of Ti Layer)

  • 권하늘;박용한;;문영훈
    • 소성∙가공
    • /
    • 제33권5호
    • /
    • pp.330-340
    • /
    • 2024
  • The martensitic Ni-Ti shape memory alloys(SMA) can achieve a two-way shape memory effect (TWSME) through thermomechanical training/cycling. In this study, the surface of Ni-Ti SMA sheets was treated by depositing a certain number of titanium (Ti) powder layers using a selective laser meling (SLM) process to enhance TWSME. The results showed that a unique TWSME of approximately 12% with good stability was achieved after 100 training cycles when the optimum number of five Ti layers was deposited. A larger HAZ and lower cooling rate pushed more Ti particles into the grains rather than the grain boundaries, providing more time for Ti to react with NiTi to form Ti-rich intergranular Ti2Ni(Ox) precipitates. This resulted in further hindering of dislocation movement within the grains and the generation of internal stress fields required for attaining a larger TWSME. With an increase in the number of Ti-deposited layers, there was no noticeable reduction in the one-way shape memory effect (OWSME) through the initial cycling. This was due to the high residual tensile stress caused by the lower thermal expansion of the Ti layer compared to the Ni-Ti sheet.