• Title/Summary/Keyword: Shape Engineering

Search Result 12,905, Processing Time 0.039 seconds

Process Design of Multi-Stage Shape Drawing Process for Cross Roller Guide (크로스 롤러 가이드 다단 형상인발 공정설계에 관한 연구)

  • Lee, Sang-Kon;Lee, Jae-Eun;Lee, Tae-Kyu;Lee, Seon-Bong;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.124-130
    • /
    • 2009
  • In the multi-stage shape drawing process, the most important aspect for the economy is the correct design of the various drawing stage. For most of the products commonly available round or square materials can be used as initial material. However, special products should be pre-rolled. This study proposes a process design method of multi-stage shape drawing process for producing cross roller guide. Firstly, a standard classification of shape drawing process is suggested based on the requirement of pre-rolling process. And a design method is proposed to design the intermediate die shape. The process design method is applied to design the multi-stage shape drawing process for producing cross roller guide. Finally, the effectiveness of the proposed design method is verified by FE-analysis and shape drawing experiment.

Behaviors of box-shape steel reinforced concrete composite beam

  • Yang, Chun;Cai, Jian;Wu, Yi;He, Jiangang;Chen, Haifeng
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.419-432
    • /
    • 2006
  • Experimental studies on the behaviors of box-shape steel reinforced concrete (SRC) composite beams were conducted. Seven 1:3 scale model composite beams were tested to failure. Each of the beams was simply supported at the ends and two concentrated loads were applied at the one-third span and two-thirds span respectively. Experimental results indicate that the flexural strength can be enhanced when the ratio of flexural reinforcements and flange thickness of the shape steel are increased; the shear strength is enhanced with increase of web thickness of the shape steel. Insignificant effects of concrete in the box-shape steel are found on improving the flexural strength and shear strength of the box-shape SRC composite beams, thus concrete inside the box-shape steel can be saved, and the weight of the SRC beams can be decreased. Shear studs can strengthen the connection and co-work effects between the shape steel and the concrete and enhance the shear strength, but stud design for the composite beams should be further improved. Formulas for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box-shape SRC composite beam is a kind of ductile member, and suitable for extensive engineering application.

A new damage detection indicator for beams based on mode shape data

  • Yazdanpanah, O.;Seyedpoor, S.M.;Bengar, H. Akbarzadeh
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.725-744
    • /
    • 2015
  • In this paper, a new damage indicator based on mode shape data is introduced to identify damage in beam structures. In order to construct the indicator proposed, the mode shape, mode shape slope and mode shape curvature of a beam before and after damage are utilized. Mode shape data of the beam are first obtained here using a finite element modeling and then the slope and curvature of mode shape are evaluated via the central finite difference method. In order to assess the robustness of the proposed indicator, two test examples including a simply supported beam and a two-span beam are considered. Numerical results demonstrate that using the proposed indicator, the location of single and multiple damage cases having different characteristics can be accurately determined. Moreover, the indicator shows a better performance when compared with a well-known indicator found in the literature.

Development of a Korean Red-Ginseng’s Shape Sorting System Using Image Processing (영상처리를 이용한 홍삼의 외형선별 시스템 개발)

  • 장요한;장동일;방승훈
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.279-286
    • /
    • 2001
  • The purpose of this study were to organize a sorting system, to develop an algorithm of image processing for the shape sorting, and to finally develop a scientific and objective shape sorting system of Korean Red-Ginseng for mechanization of the shape sorting. The results of this study are followed. 1. The shape sorting system of Korean Red-Ginseng consists of a control computer, a color CCD camera(WV-CP4110) for image processing, an image processing board(DT3153), and an image acquisition unit. 2. Many image processing skill, such as sliding, stretching, threshold, binary and D$\sub$t/ were used to analyze the shape sorting factors of Korean Red-ginseng. 3. The sorting accuracy of the shape sorting system for the Korean Red-Ginseng was 74.7%. It is 21.1% lower than that of human inspector. Although the system has low accuracy, using more cameras may improve its sorting accuracy.

  • PDF

Assessment of Lateral Deformation Shape for High-rise Building Structures (고층건물의 수평변형형상에 대한 평가)

  • 서현주
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.36-43
    • /
    • 1998
  • The purpose of study is to propose numerical assessment methods of lateral deformation shape under lateral loads for regular high-rise buildings. The normalized 1st mode shape is used to assess lateral deformation shape. The assessment method are mass participation factor, representative value by RMS, the mean value, median of the nomalized 1st mode shape. These methods are able to know a fundamental lateral deformation shape of the building and effects of interactive systems numerically. Generally the characteristics of normalized 1st mode shape for various models coincide with numerical assessment results.

  • PDF

A Theoretical Comparison of Two Possible Shape Memory Processes in Shape Memory Alloy Reinforced Metal Matrix Composite

  • Lee Jae Kon;Kim Gi Dae
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1460-1468
    • /
    • 2005
  • Two possible shape memory processes, austenite to detwinned martensite transformation and twinned martensite to detwinned martensite transformation of a shape memory alloy have been modeled and examined. Eshelby's equivalent inclusion method with Mori-Tanaka's mean field theory is used for modeling of the shape memory processes of TiNi shape memory alloy reinforced aluminum matrix composite. The shape memory amount of shape memory alloy, plastic strain and residual stress in the matrix are computed and compared for the two processes. It is shown that the shape memory amount shows differences in a small prestrain region, but the plastic strain and the residual stress in the matrix show differences in the whole prestrain region. The shape memory process with initially martensitic state of the shape memory alloy would be favorable to the increase in the yield stress of the composite owing to the large compressive residual stress and plastic strain in the matrix.

Compensation for Elastic Recovery in a Flexible Forming Process Using Predictive Models for Shape Error (성형 오차 예측 모델을 이용한 가변 성형 공정에서의 탄성 회복 보정)

  • Seo, Y.H.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.479-484
    • /
    • 2012
  • The objective of this study is to compensate the elastic recovery in the flexible forming process using the predictive models. The target shape was limited to two-dimensional shape having only one curvature radius in the longitudinal-direction. In order to predict the shape error the regression and neural network models were established based on the finite element (FE) simulations. A series of simulations were conducted considering input variables such as the elastic pad thickness, the thickness of plate, and the objective curvature radius. Then, at sampling points in the longitudinal-direction, the shape errors between formed and objective shapes could be calculated from the FE simulations as an output variable. These shape errors were expressed to a representative error value by the root mean square error (RMSE). To obtain the correct objective shape the die shape was adjusted by the closed-loop using the neural network model since the neural network model shows a higher capability of estimating the shape error than the regression model. Finally the experimental result shows that the formed shape almost agreed with the objective shape.

Experimental Determination of the Optimum Blank Shape in Rectangular Cup Drawing

  • Bae, Won-Byong;Kim, Ho-Yoon;Hwang, Bum-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.5-8
    • /
    • 2003
  • The rectangular deep drawing process is widely used in sheet metal forming, but there are various associated defects, such as earing, wrinkling, tearing, etc. In order to avoid such defects, an optimum blank shape is required. Such an optimum blank shape cannot be generalized because deep drawing processes are involved in complex process parameters. So, it is necessary to do systematic research to determine the optimum blank shape for the deep drawing process. In this study, a rectangular cup drawing test has been carried out to determine the optimum blank shape for various stainless steel sheets. From the test, a new blank model, which has no earing, is propsed.

Prediction of Spectral Acceleration Response Based on the Statistical Analyses of Earthquake Records in Korea (국내 지진기록의 통계적 분석에 기반한 스펙트럴 가속도 응답 예측기법)

  • Shin, Dong-Hyeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.45-54
    • /
    • 2016
  • This study suggests a prediction model of ground motion spectral shape considering characteristics of earthquake records in Korea. Based on the Graizer and Kalkan's prediction procedure, a spectral shape model is defined as a continuous function of period in order to improve the complex problems of the conventional models. The approximate spectral shape function is then developed with parameters such as moment magnitude, fault distance, and average shear velocity of independent variables. This paper finally determines estimator coefficients of subfunctions which explain the corelation among the independent variables using the nonlinear optimization. As a result of generating the prediction model of ground motion spectral shape, the ground motion spectral shape well estimates the response spectrum of earthquake recordings in Korea.

Shape design for viscoelastic vibration isolators to minimize rotational stiffness (회전강성 최소화를 위한 절연요소의 형상 설계)

  • Oh, Hwan-Youp;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.343-347
    • /
    • 2008
  • Design of shape for visco-elastic vibration isolation elements, which are very cost-effective and so popular in many applications is frequently based on experiences, intuitions, or trial and errors. Such traditions in shape design make it difficult for drastic changes or new concepts to come out. In this paper, both topological method and shape optimization method are combined together to find out a most desirable isolator shape efficiently by using two commercial engineering programs. ABAQUS and MATLAB. The procedure is divided into two steps. At the first step, a topology optimization method is employed to find an initial shape. where density of either 0 or 1 for finite elements is used for physical realizability. At the second step, based on the initial shape, finer tuning of the shape is done by boundary movement method. An illustration of the procedure will be presented for a mount of an air-conditioner compressor system and the effectiveness will be discussed.

  • PDF