• Title/Summary/Keyword: Shape Assumption

Search Result 212, Processing Time 0.024 seconds

A Study on the Equivalent Static Wind Load Estimation of Large Span Roofs (대스팬 지붕구조물의 등가정적 풍하중 산정에 관한 연구)

  • Lee, Myung-Ho;Kim, Ji-Young;Kim, Dae-Young;Kim, Sang-Dae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.83-90
    • /
    • 2006
  • The GF(Gust Factor) method is usually used as a method to evaluate equivalent static wind loads for general structures. The GF method is performed on the assumption that the shape of the equivalent static wind load profile is typically similar to that of mean wind loads. The shape of fluctuating wind loads could be quite different with that of the mean wind loads in case of large-span structures. So, the effect of higher modes as well as first mode must be considered to evaluate the wind loads. In this study, the ACS (Advanced Conditional Sampling) method is suggested to evaluate of equivalent static wind loads after investigating about GF and LRC method. The An method ran derive effective static wind loads by combining wind pressures and inertia forces of a structure chosen at a maximum load effect. The maximum load effect is assessed with the time history analysis using pressure data measured in wind tunnel tests. Equivalent static wind loads evaluated using ACS, GF, and LRC methods are compared to verify the effectiveness of ACS method.

  • PDF

A Biomechanical Analysis or the Stress Distribution of Dental Implant and Alveolar Bone Utilizing Finite Element Method (유한요소법을 이용한 치과용 고정체와 치조골에서의 응력분포에 대한 생체 역학적 분석)

  • Jung, J.K.;Shin, J.W.;Lee, S.J.;Kim, Y.K.;Kim, J.S.;Park, J.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.511-514
    • /
    • 1997
  • The objective of this study is to propose a finite element based design of the dental implant replacing unction and shape of natural teeth. For this, geometric actors were varied to investigate stress distribution of the alveolar bone around dental implant. In this study, the results were obtained based on the theory of linear elastic, with geometrically axisymmetric assumption. Geometric actors determining implant shape are ranged as 0.2mm-0.6mm, 0.04mm-0.1mm, 0.46mm-0.84mm or height of thread, radius of curvature of thread, and pitch, respectively. The stresses in the alveolar bone caused by biting force playa major role in determining implant stability. Especially, the stress concentration in the cortical bone causes bone resorption and finally makes the implant unstable. Therefore, the stress distributions were investigated on the side of the alveolar bone focusing on the area of cortical bone. The maximum von Mises stress was found to increase up to 6% as the height of thread increases, while its value was to decrease to 19% when the radius of curvature increase within the assigned ranges. For the variation of pitch, the larger size of pitch results in greater maximum von Mises stress when the length of the implant under consideration is fixed. The existence of the neck below the shoulder did not affect the stress distribution in the region of alveolar bone. However, the stresses on the side of the implant near the neck were found to be different by 20% approximately. Therefore, the neck can provide the stability of the implant against continuing biting movement. As a conclusion, the finite element based study shows a potential in designing the dental implant systematically.

  • PDF

A Quantification Method for the Cold Pool Effect on Nocturnal Temperature in a Closed Catchment (폐쇄집수역의 냉기호 모의를 통한 일 최저기온 분포 추정)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.176-184
    • /
    • 2011
  • Cold air on sloping surfaces flows down to the valley bottom in mountainous terrain at calm and clear nights. Based on the assumption that the cold air flow may be the same as the water flow, current models estimate temperature drop by regarding the cold air accumulation at a given location as the water-like free drainage. At a closed catchment whose outlet is blocked by man-made obstacles such as banks and roads, however, the water-like free drainage assumption is no longer valid because the cold air accumulates from the bottom first. We developed an empirical model to estimate quantitatively the effect of cold pool on nocturnal temperature in a closed catchment. In our model, a closed catchment is treated like a "vessel", and a digital elevation model (DEM) was used to calculate the maximum capacity of the cold pool formed in a closed catchment. We introduce a topographical variable named "shape factor", which is the ratio of the cold air accumulation potential across the whole catchment area to the maximum capacity of the cold pool to describe the relative size of temperature drop at a wider range of catchment shapes. The shape factor is then used to simulate the density profile of cold pool formed in a given catchment based on a hypsometric equation. The cold lake module was incorporated with the existing model (i.e., Chung et al., 2006), generating a new model and predicting distribution of minimum temperature over closed catchments. We applied this model to Akyang valley (i.e., a typical closed catchment of 53 $km^2$ area) in the southern skirt of Mt. Jiri National Park where 12 automated weather stations (AWS) are operational. The performance of the model was evaluated based on the feasibility of delineating the temperature pattern accurately at cold pool forming at night. Overall, the model's ability of simulating the spatial pattern of lower temperature were improved especially at the valley bottom, showing a similar pattern of the estimated temperature with that of thermal images obtained across the valley at dawn (0520 to 0600 local standard time) of 17 May 2011. Error in temperature estimation, calculated with the root mean square error using the 10 low-lying AWSs, was substantially decreased from $1.30^{\circ}C$ with the existing model to $0.71^{\circ}C$ with the new model. These results suggest the feasibility of the new method in predicting the site-specific freeze and frost warning at a closed catchment.

Effect of Bond Length and Web Anchorage on Flexural Strength in RC Beams Strengthened with CFRP Plate (부착길이와 복부정착이 CFRP판으로 보강된 RC 보의 휨 보강효과에 미치는 영향)

  • 박상렬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.645-652
    • /
    • 2002
  • This paper presents the flexural behavior and strengthening effect of reinforced concrete beams bonded with carbon FRP plate. Parameters involved in this experimental study were plate bond length and sheet web anchorage length. Test beams were strengthened with FRP plate on the soffit and anchored with FRP sheet on the web. In general, strengthened beams with no web anchorage were failed by concrete cover failure along the longitudinal reinforcement. On the other hand, strengthened beams with web anchorage were finally failed by delamination shear failure within concrete after breaking of CFRP sheet wrapping around web. The ultimate load and deflection of strengthened beams increased with an increased bond length of FRP plate. Also, the ultimate load and deflection increased with an increased anchorage length of FRP sheet. Particularly, the strengthened beams with web anchorage maintained high ultimate load resisting capacity until very large deflection. The shape of strain distribution of CFRP plate along beam was very similar to that of bending moment diagram. Therefore, an assumption of constant shear stress in shear span could be possible in the analysis of delamination shear stress of concrete. In the case of full bond length, the ultimate resisting shear stress provided by concrete and FRP sheet Increased with an increase of web anchorage length. In the resisting shear force, a portion of the shear force was provided by FRP anchorage sheet.

Development of Sag and Tension Sensitivity Estimation Method for Configuration Control under PPWS Erection in a Suspension Bridge (현수교 PPWS 가설중 형상관리를 위한 PPWS 새그 및 장력민감도 산정법 개발)

  • Jeong, Woon;Seo, Ju Won;Lee, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.255-266
    • /
    • 2012
  • Main cable of a suspension bridge is the important member which shows the overall structure integrity at bridge completion. Configuration of main cable is a free hanging state at cable erection completion and is different from that at bridge completion supporting the dead loads such as hanger, girder, and so on. Accordingly, the configuration control under cable erection is considerably significant because the configuration at cable erection completion has direct influence on that at bridge completion. That is performed by sag adjustments at center, side span and tension adjustments at anchor span. The former needs the sag sensitivity which represents the control quantity of strand length corresponding to that of sag. The latter requires the tension sensitivity which shows the change of strand tension according to that of strand temperature. In this study, the fundamental equations of cable were derived with the assumption of either catenary or parabola shape, the differential-related equations using chain rule on horizontal tension were drawn from those and finally the estimation methods of the sag / tension sensitivity were proposed from both those. The nonlinear numerical analysis flow charts of sag sensitivity based on the catenary equations were proposed and the sag sensitivities grounded on the differential-related equations were compared with the results using them for various parameters of sag change. Also, considering the combinations of sag change parameters, the calculation method of the final variation for the cable sag was suggested. For the real suspension bridge under construction with PPWS method, the sag/tension sensitivity were estimated considering the construction conditions like the change of PPWS length, PPWS temperature, bridge span, etc.. We hope that this study will be a systematic guideline for the configuration control under main cable erection and improved highly by field verification in the real bridge site.

Static Behavior of Hollow Cantilever Beam Using Multiplexed FBG Sensors (다중화된 FBG센서를 이용한 중공 내민보의 정적 거동 분석)

  • Lee, Tae-Hee;Kang, Dong-Hoon;Chung, Won-Seok;Mok, Young-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.316-322
    • /
    • 2009
  • This paper presents a preliminary study to monitor the lateral behavior of pile foundation using multiplexed fiber Bragg grating(FBG) sensors. In the Preliminary study, an 1.7 meter long cantilever beam with the shape of square hollow box was fabricated and tested under the static loading. Four FBG sensors were multiplexed in a single optical fiber and installed into the top and bottom of the cantilever beam. The strains are directly measured from FBG sensors followed by curvature calculations based on the plane section assumption. Vertical deflections are then estimated using the regression analyses based on the geometric relationships. It has been found that excellent correlation with conventional sensing system was observed. The success of the test encourages the use of the FBG sensing system as a monitoring system for pile foundations. However, further consideration should be given in the case of the sensor malfunction for the practical purpose.

Open Channel Characteristics on Different Land Cover for Neponset River, Boston, MA (상이한 토지이용에서 나타나는 하천의 특성에 관한 연구 : 메사추세츠 보스턴의 네폰셋강의 사례연구)

  • Lee, Ja-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.16 no.2
    • /
    • pp.100-109
    • /
    • 2010
  • The study examines two different sites to analyze the difference of stream channel profile between two different landuse areas on Neponset River, Boston, MA. Landuse represents the current status of land in terms of human, agricultural or forest, industry and environmental activity types. According to the previous research, forest and urban area are significantly distinguished in chemical characteristic, shape and bed load of the stream. On the chosen sites, I look at the cross-section profile, the slope, velocity, and roughness of the channels. With the data collected at the site I determined the value for the channel bed material using Manning's equation, and compared with the result of HEC-RAS model with the cross-section profile data I measured. In the forest area, water surface elevation and bed material obtained through Manning's equation are very close to HEC-RAS model result. However, in the resident area the Manning's 'n' value calculated much higher than assumption which was considered as cobble whose 'n' value is 0.03-0.06. The difference could be caused by unusual steep elevation on the site and the dam present down further. With the steep elevation upside of dam, there is critical-depth condition occurs. The difference of Manning's 'n' value reflects the difference of depth. HEC-RAS model was run to analyze the difference and the result shows that depth is 0.36 much less than 0.688 what I computed when the Manning's n value is 0.03(cobble) instead of the result of the study (0.13292). Beside, dam is a major source of fragmentation and degradation of stream, and it's possibly inferred upstream water levels are increased and stream velocity is decreased. This study is meaningful for introduction of HEC-RAS in geography field to analyze different sites with channel bed material, and it is going to be used more actively to manage river and river side.

  • PDF

A study of the Patriarchal Characteristics of Welfare States (복지국가의 가부장적 특성에 대한 연구)

  • Hong, Seung-Ah
    • Korean Journal of Social Welfare
    • /
    • v.35
    • /
    • pp.453-474
    • /
    • 1998
  • This paper attempts to analyse the patriarchal characteristics of welfare states. Increasingly, debates on welfare states are explicitly focusing on the relationships between state, market and family. How these relationships are structured forms the core parts of the particular welfare states, that is they give shape to different welfare state regimes. Although welfare states have developed incresingly, there are some problems that sustain these states asymmetrical, unequal, even sexist. In this paper, I want to make these problems visible by the terms of gender division of labour, the model of male work and the changing characteristics of patriarchy. Firstly, from the feminist perspective, we can point the fact that the welfare states are structured by gender. Welfare states take it for granted that our socities are based on the assumption of gender division of labour, what is called male breadwinner/ female dependent. And the state takes this gendered family as the stereotype in our societies. Secondly, it is not sufficient condition for men and women to perform satisfactory life of work and family that welfare states provide childcare center on an extensive scale. This is because that our societies are runned by "the model of male work". Thirdly, we can find that the characteristics of patriarchy of welfare state are changing. These changes can be explained from the 'private patriarchy' to the 'public patriarchy', in other words, from the women's dependence to individual man to the dependence to the state/ public sectors. And also under these changes, we can find the potent possibilities for women to take economic activities and independent self-supports.

  • PDF

Conjugate Simulation of Heat Transfer and Ablation in a Small Rocket Nozzle (소형 시험모터의 노즐 열전달 및 삭마 통합해석)

  • Bae, Ji-Yeul;Kim, Taehwan;Kim, Ji Hyuk;Ham, Heecheol;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • Ablative material in a rocket nozzle is exposed to high temperature combustion gas, thus undergoes complicated thermal/chemical change in terms of chemical destruction of surface and thermal decomposition of inner material. Therefore, method for conjugate analysis of thermal response inside carbon/phenolic material including rocket nozzle flow, surface chemical reaction and thermal decomposition is developed in this research. CFD is used to simulate flow field inside nozzle and conduction in the ablative material. A change in material density and a heat absorption caused by the thermal decomposition is considered in solid energy equation. And algebraic equation under boundary layer assumption is used to deduce reaction rate on the surface and resulting destruction of the surface. In order to test the developed method, small rocket nozzle is solved numerically. Although the ablation of nozzle throat is deduced to be higher than the experiment, shape change and temperature distribution inside material is well predicted. Error in temperature with experimental results in rapid heating region is found to be within 100 K.

A Feature Re-weighting Approach for the Non-Metric Feature Space (가변적인 길이의 특성 정보를 지원하는 특성 가중치 조정 기법)

  • Lee Robert-Samuel;Kim Sang-Hee;Park Ho-Hyun;Lee Seok-Lyong;Chung Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.33 no.4
    • /
    • pp.372-383
    • /
    • 2006
  • Among the approaches to image database management, content-based image retrieval (CBIR) is viewed as having the best support for effective searching and browsing of large digital image libraries. Typical CBIR systems allow a user to provide a query image, from which low-level features are extracted and used to find 'similar' images in a database. However, there exists the semantic gap between human visual perception and low-level representations. An effective methodology for overcoming this semantic gap involves relevance feedback to perform feature re-weighting. Current approaches to feature re-weighting require the number of components for a feature representation to be the same for every image in consideration. Following this assumption, they map each component to an axis in the n-dimensional space, which we call the metric space; likewise the feature representation is stored in a fixed-length vector. However, with the emergence of features that do not have a fixed number of components in their representation, existing feature re-weighting approaches are invalidated. In this paper we propose a feature re-weighting technique that supports features regardless of whether or not they can be mapped into a metric space. Our approach analyses the feature distances calculated between the query image and the images in the database. Two-sided confidence intervals are used with the distances to obtain the information for feature re-weighting. There is no restriction on how the distances are calculated for each feature. This provides freedom for how feature representations are structured, i.e. there is no requirement for features to be represented in fixed-length vectors or metric space. Our experimental results show the effectiveness of our approach and in a comparison with other work, we can see how it outperforms previous work.