• Title/Summary/Keyword: Shallow-water effect

Search Result 192, Processing Time 0.027 seconds

Shallow Water Effect on Resistance Performance of Large Container Ship Based on CFD Analysis (천수 효과가 대형 컨테이너선의 저항 성능에 미치는 영향에 관한 전산유체역학 해석 연구)

  • Sun-kyu, Lee;Youngjun, You;Jinhae, Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.345-354
    • /
    • 2022
  • It is easy for a ship passing through confined waters to be exposed in dangers of collisions and grounding due to different hydrodynamic responses. Since marine accidents can cause significant impacts on environments, global economy, and human lives, it is necessary to study the effect of shallow water on hydrodynamic performance of a ship. In this paper, the effect of water depth on resistance performance was investigated using CFD analysis as an initial study for improving navigational safety of a large container ship under confined waters. After a CFD set-up for deep water condition was validated and verified by comparing CFD analysis with model test results, CFD calculations according to ship speed and water depth were conducted. The features were investigated in terms of tendency and physical knowledge related to resistance performance. The increase of resistance due to shallow water effect was reviewed with empirical formula suggested from SWABE JIP. Speed loss due to shallow water effect was additionally reviewed from estimated delivered power according to ship speed and water depth.

Reduction of UKC for Very Large Tanker and Container Ship in Shallow Water

  • Lee, Sang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.3
    • /
    • pp.409-420
    • /
    • 2021
  • The decrease in under keel clearance (UKC) due to the increase of draft that occurs during advancing and turning of very large vessels of different types was analyzed based on computational fluid dynamics (CFD). The trim change in the Duisburg test case (DTC) container ship was much smaller than that of the KRISO very large crude oil carrier 2 (KVLCC2). The sinkage of both ships increased gradually as the water depth became shallower. The amount of sinkage change in DTC was greater than that in KVLCC2. The maximum heel angle was much larger for DTC than for KVLCC2. Both ships showed outward heel angles up to medium-deep water. However, when the water depth became shallow, an inward heel was generated by the shallow water effect. The inward heel increased rapidly in very shallow water. For DTC, the reduction ratio was very large at very shallow water. DTC appeared to be larger than KVLCC2 in terms of the decreased UKC because of shallow water in advancing and turning. In this study, a new result was derived showing that a ship turning in a steady state due to the influence of shallow water can incline inward, which is the turning direction.

Effects of no-till direct seeding on irrigation water and cost reduction - A field case study (무경운 직파재배가 논 용수량 및 비용절감에 미치는 효과 - 현장 사례 연구)

  • Chung, Sang-Ok;Kim, Ji-Yong
    • Current Research on Agriculture and Life Sciences
    • /
    • v.18
    • /
    • pp.33-42
    • /
    • 2000
  • A field case study was performed to investigate the effect of shallow ponding in paddy field on irrigation water requirement of direct seeded rice. In addition, an economic analysis was made to see the effect of no-till direct seeded rice on cost reduction. A field study was performed at a 2.1ha paddy field in Kimjae city, Chonbuk province from 1991 to 1999. Various direct seeding methods such as dryland seeding, wetland seeding, and no-till wetland seeding were introduced. Then, cost reductions due to the direct seeding and no-till were calculated. In addition, to investigate the effect of shallow ponding on irrigation water requirement, field measurements such as irrigation water volume, drainage water volume, rainfall depth, and ponding depth, were made at a 40a plot within the same area in 1988 and 1990. The results of the shallow ponding study showed that the irrigation water depth, rainfall, and the drainage depth were 379mm, 458mm, and 448mm in 1988 growing season, and 274mm, 819mm, and 736mm in 1990, respectively. The shallow ponding irrigation method saved irrigation water by about 20% with higher yield compared with the traditional method. The economic analysis showed that won \640,000 per ha can be saved by direct seeding due to no nursery cost, and \1,220,000 per ha due to no-till and no nursery cost. The yields ranged 540 to 640 kg per 10a during the study period with an average of 590kg per 10a. If these cropping techniques with no-till direct seeding and shallow ponding depth for rice cropping prove to be advantageous with further study, they can be adopted for the most of the paddy fields in Korea.

  • PDF

Effect of subsurface flow and soil depth on shallow landslide prediction

  • Kim, Minseok;Jung, Kwansue;Son, Minwoo;Jeong, Anchul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.281-281
    • /
    • 2015
  • Shallow landslide often occurs in areas of this topography where subsurface soil water flow paths give rise to excess pore-water pressures downslope. Recent hillslope hydrology studies have shown that subsurface topography has a strong impact in controlling the connectivity of saturated areas at the soil-bedrock interface. In this study, the physically based SHALSTAB model was used to evaluate the effects of three soil thicknesses (i.e. average soil layer, soil thickness to weathered soil and soil thickness to bedrock soil layer) and subsurface flow reflecting three soil thicknesses on shallow landslide prediction accuracy. Three digital elevation models (DEMs; i.e. ground surface, weathered surface and bedrock surface) and three soil thicknesses (average soil thickness, soil thickness to weathered rock and soil thickness to bedrock) at a small hillslope site in Jinbu, Kangwon Prefecture, eastern part of the Korean Peninsula, were considered. Each prediction result simulated with the SHALSTAB model was evaluated by receiver operating characteristic (ROC) analysis for modelling accuracy. The results of the ROC analysis for shallow landslide prediction using the ground surface DEM (GSTO), the weathered surface DEM and the bedrock surface DEM (BSTO) indicated that the prediction accuracy was higher using flow accumulation by the BSTO and weathered soil thickness compared to results. These results imply that 1) the effect of subsurface flow by BSTO on shallow landslide prediction especially could be larger than the effects of topography by GSTO, and 2) the effect of weathered soil thickness could be larger than the effects of average soil thickness and bedrock soil thickness on shallow landslide prediction. Therefore, we suggest that using BSTO dem and weathered soil layer can improve the accuracy of shallow landslide prediction, which should contribute to more accurately predicting shallow landslides.

  • PDF

Effects of fended-Water Depth and Reclaimed Wastewater Irrigation on Paddy Rice Culture (담수심과 오수처리수 관개가 벼재배에 미치는 영향)

  • 윤춘경;황하선;정광욱;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.55-65
    • /
    • 2003
  • Pilot study was conducted to examine the effects of ponded-water depth and reclaimed wastewater irrigation on paddy rice culture. For the ponded-water depth effect, three treatments of shallow, traditional, and deep water depths were applied, and each treatment was triplicated. The irrigation water for the treatment pots was an effluent from constructed wetland system for sewage treatment, while the control pot was irrigated with tap water kept traditional ponded-water depth. Irrigation water quantity varied with ponded-water depth as expected and drainage water quantity also varied similarly, which implies that shallow irrigation might save irrigation water and also reduce environmental impacts on downstream water quality. Rice growth and production were not significantly affected by ponded-water depth within the experimental condition, instead there was an indication of increased production in shallow and deep ponded-water depths compared to the traditional practice. Raising drainage outlet to the adequate height in paddy dike might be beneficial to save water resources within the paddy field. There was no adverse effect observed in reclaimed wastewater irrigation on the rice production, and mean yield was even greater than the control pots with tap water irrigation although statistically not significant. Water-saving irrigation by shallow ponded-water depth, raising the outlet height in diked rice paddy fields, minimizing forced surface drainage by well-planned irrigation, and reclaimed wastewater irrigation are suggested to save water and protect water quality. However, deviation from traditional farming practices might affect rice growth in long term, and therefore, further investigations are recommended before full scale application.

Shallow Water Wave Hindcasting by the Combination of MASCON and SWAN Models (지형을 고려한 해상풍 모델(MASCON)과 SWAN 모델의 결합에 의한 천해파랑 산정)

  • Kim, Ji-Min;Kim, Chang-Hoon;Kim, Do-Sam;Hur, Dong-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • Shallow water waves are hindcasted from sea wind fields, which include wave transformations such as shoaling, refraction, diffraction, reflection and wave breaking. In case of estimating sea wind field in shallow water, the sea wind revised from free wind obtained by the typhoon model is widely used. However, this method is not able to consider the effect of land topography on the wind field, which will be important factor for shallow water wave forecasting and hindcasting. In this study, therefore, the effect of land topography on sea wind field in shallow water is investigated for shallow water wave forecasting and hindcasting with high accuracy. The 3-D MASCON model is introduced to consider the influence of land topography on the wind field. And, for two areas divided by the topographical characteristics, i.e. shielded and opened coastal areas, sea wind field is examined by comparison between initial wind field by typhoon model and modified wind field by 3-D MASCON model. Finally, applying these sea wind fields to SWAN model, the results of shallow water wave calculated in shielded and opened coastal areas are compared, and, also, the effect of MASCON model on shallow water wave forecasting and hindcasting is discussed.

Flow behaviors of square jets surface discharged and submerged discharged into shallow water (천해역에 수표면 및 수중방류된 사각형제트의 흐름 거동)

  • Kim, Dae-Geun;Kim, Dong-Ok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.627-634
    • /
    • 2011
  • In the present study, the flow behaviors of square jets surface discharged and submerged discharged into shallow water were each simulated using computational fluid dynamics, and the results were compared. As for the verification of the models, the results of the hydraulic experiment conducted by Sankar, et al. (2009) were used. According to the results of the verification, the present application of computational fluid dynamics to the flow analysis of square jets discharged into shallow water was valid. As for the wall jet, which is one form of submerged discharges, at the bottom wall boundary, the peak velocity of the jet rapidly moved from the center of the jet to the bottom wall boundary due to the restriction of jet entrainment and the no-slip condition of the bottom wall boundary, and, as for the surface discharge, because jet entrainment is limited on the free water surface, the peak velocity of the jet moved from the center of the jet to the free water surface. This is because jet entrainment is restricted at the bottom wall boundary and the surface so that the momentum of the central core of the jet is preserved for considerable time at the bottom wall boundary and the surface. In addition, due to the effect of the bottom wall boundary and the free water surface, the jet discharged into shallow water had a smaller velocity diminution rate near the discharge outlet than did the free jet; at a location where it was so distant from the discharge outlet that the vertical profile of the velocity was nearly equal (b/x =20~30), moreover, it had a far smaller velocity diminution rate than did the free jet due to the effect of the finite depth.

NUMERICAL ANALYSIS OF THE FLOW AROUND THE HULL AND THE PROPELLER OF A SHIP ADVANCING IN SHALLOW WATER (천수에서 전진하는 선박의 선체 및 추진기 주위 유동 수치 해석)

  • Park, I.R.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.93-101
    • /
    • 2015
  • This paper provides numerical results of the simulation for the flow around the hull and the propeller of KCS model ship advancing in shallow water conditions. A finite volume method is used to solve the unsteady Reynolds averaged Navier-Stokes(RANS) equations, where the wave-making problem is solved by using a volume-of-fluid(VOF) method. The wave formed near the hull surface in shallow water conditions shows a deep trough dominant pattern that causes the loss of buoyancy followed by hull squat. The flow past the hull increases as the depth of water decreases. However, the axial flow velocity around the stern shows a reduction in magnitude by the effect of shallow water accompanied by the hull-propeller interaction. As a results, the thrust and torque coefficient increase about 8.3% and 6.2%, respectively for a depth of h/T=3.0 corresponding to a depth Froude number of $F_h=0.693$. The resistance coefficient increases about 11.6% at this Froude number condition.

Bank Effect of a Ship Operating in a Shallow Water and Channel (천수 및 수로 운항 시 선박의 측벽효과)

  • Park, Dong-Woo;Choi, Hee-Jong;Pai, Kwang-Jun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • When a ship operates in a shallow water and channel, the hull sinkage and asymmetrical force generated around the ship by the influence of sea bottom and bank walls are caused collision with sea bottom, other ships or the bank itself. Especially, the shipping company and pilots navigating the area of Europe and North America with many channels are deal with it as a important matter to prevent collision. In this paper, hydrodynamic force generated between the ship and bank using the numerical analysis for the safe navigation of ship, that is, sway force and yaw moment should be presumed qualitatively. It makes a program for fluid analysis of the shallow water and bank effect. Analyses are carried out for three kind of parameter, that is, ship's speed, water depth and ship-bank distance for crude oil carriers. The numerical analysis results are compared with results of the experiments and the previous published papers.

A Numerical Study to Evaluate the Resistance Performance of a Ro-Pax Hull Form in Shallow Water (Ro-Pax 선형의 천수역에서 조파저항성능 평가를 위한 수치적 연구)

  • Hong, Chun-Beom;Shin, Soo-Chul;Kim, Jung-Joong;Choi, Soon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.315-321
    • /
    • 2005
  • The effect of water depth on the wave making resistance performance is great where Froude number based on the water depth is close to one. The increase of wave making resistance due to the shallow water effect is evaluated by a numerical analysis in the present study. Three-dimensional Navier-Stokes and continuity equations are employed for the present study and the equations are discretized by finite difference method. The interface between water and air is determined by the level set method. In order to validate the numerical method, the change of resistance performance for Wigley hull according to the water depth is evaluated and the computed resistance coefficient is compared with measured one. The present numerical method is applied for the simulation of wave phenomena around a Ro-Pax hull form and the computed results are discussed in the resistance performance point of view.