• Title/Summary/Keyword: Shallow Water Condition

Search Result 179, Processing Time 0.025 seconds

Stability analysis of an unsaturated expansive soil slope subjected to rainfall infiltration

  • Qi, Shunchao;Vanapalli, Sai K.;Yang, Xing-guo;Zhou, Jia-wen;Lu, Gong-da
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Shallow failures occur frequently in both engineered and natural slopes in expansive soils. Rainfall infiltration is the most predominant triggering factor that contributes to slope failures in both expansive soils and clayey soils. However, slope failures in expansive soils have some distinct characteristics in comparison to slopes in conventional clayey soils. They typically undergo shallow failures with gentle sliding retrogression characteristics. The shallow sliding mass near the slope surface is typically in a state of unsaturated condition and will exhibit significant volume changes with increasing water content during rainfall periods. Many other properties or characteristics change such as the shear strength, matric suction including stress distribution change with respect to depth and time. All these parameters have a significant contribution to the expansive soil slopes instability and are difficult to take into consideration in slope stability analysis using traditional slope stability analysis methods based on principles of saturated soil mechanics. In this paper, commercial software VADOSE/W that can account for climatic factors is used to predict variation of matric suction with respect to time for an expansive soil cut slope in China, which is reported in the literature. The variation of factor of safety with respect to time for this slope is computed using SLOPE/W by taking account of shear strength reduction associated with loss of matric suction extending state-of-the art understanding of the mechanics of unsaturated soils.

Numerical Simulation of Convection-dominated Flow Using SU/PG Scheme (SU/PG 기법을 이용한 이송이 지배적인 흐름 수치모의)

  • Song, Chang Geun;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3B
    • /
    • pp.175-183
    • /
    • 2012
  • In this study, Galerkin scheme and SU/PG scheme of Petrov-Galerkin family were applied to the shallow water equations and a finite element model for shallow water flow was developed. Numerical simulations were conducted in several flumes with convection-dominated flow condition. Flow simulation of channel with slender structure in the water course revealed that Galerkin and SU/PG schemes showed similar results under very low Fr number and Re number condition. However, when the Fr number increased up to 1.58, Galerkin scheme did not converge while SU/PG scheme produced stable solutions after 5 iterations by Newton-Raphson method. For the transcritical flow simulation in diverging channel, the present model predicted the hydraulic jump accurately in terms of the jump location, the depth slope, and the flow depth after jump, and the numerical results showed good agreements with the hydraulic experiments carried out by Khalifa(1980). In the oblique hydraulic jump simulation, in which convection-dominated supercritical flow (Fr=2.74) evolves, Galerkin scheme blew up just after the first iteration of the initial time step. However, SU/PG scheme captured the boundary of oblique hydraulic jump accurately without numerical oscillation. The maximum errors quantified with exact solutions were less than 0.2% in water depth and velocity calculations, and thereby SU/PG scheme predicted the oblique hydraulic jump phenomena more accurately compared with the previous studies (Levin et al., 2006; Ricchiuto et al., 2007).

Evaluation of Tunnel Face Stability with the Consideration of Seepage Forces (침투력을 고려한 토사터널 막장의 안정성 평가방법에 대한 고찰)

  • 남석우;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.193-200
    • /
    • 1999
  • Since Broms and Bennermark(1967) suggested the face stability criterion based on laboratory extrusion tests and field observations, the face stability of a tunnel driven in cohesive material has been studied by several authors. And recently, more general solution for the tunnel front is given by Leca and Panet(1988). They adopted a limit state design concept to evaluate the face stability of a shallow tunnel driven into cohesionless material and showed that the calculated upper bound solution represented the actual behavior reasonably well. In this study, two factors are simultaneously considered for assessing tunnel face stability: One is the effective stress acting on the tunnel front calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady state ground water flow. The model tests were performed to evaluate the seepage force acting on the tunnel front and these results were compared with results of numerical analysis. Consequently, the methodology to evaluate the stability of a tunnel face including limit analysis and seepage analysis is suggested under the condition of steady state ground water flow.

  • PDF

Comparison of Methods to Calculate Permeability Parameter of Perforated Wall with Vertical Slits (연직 슬릿 유공벽의 투수계수 계산 방법의 비교)

  • Suh, Kyung-Duck;Ji, Chang-Hwan;Kim, Yeul-Woo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.506-509
    • /
    • 2008
  • Mathematical models have been developed to calculate hydrodynamic characteristics of perforated-wall structures. Most of the models separate the fluid regions into front and back of the wall, assume the solution in each region, and calculate the solution by using the matching condition at the wall. The matching condition involves the permeability parameter, which can be calculated by the methods proposed by Mei et al. or Sollitt and Cross. In this study, we compare these two methods. The former is advantageous because all the related variables are known, but it gives wrong result in the limit of long waves, i.e. zero transmission and perfect reflection of very long waves. In deep water, the latter predicts smaller transmission and larger reflection than the former, and vice versa in shallow water. In the latter method, the friction coefficient decreases as the wall thickness or the porosity of the wall increases.

  • PDF

Effects of Wall Boundary Condition on Velocity Distribution of Shallow Water Flow (벽면경계조건이 천수흐름 유속분포에 미치는 영향)

  • Seo, Il-Won;Song, Chang-Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.189-193
    • /
    • 2010
  • RMA-2, Telemac-2D, River2D 등 기존의 대부분 국내외 상용모형에서는 내부 경계인 하천구조물과 외부 경계인 측벽에서의 경계조건을 활동조건(slip condition)으로 가정하여 흐름장을 계산하였다. 그러나 실제로 벽면에서는 마찰력에 의해 흐름이 존재하지 않는 무활조건(no slip condition)이 물리적으로 타당하다. 따라서 본 연구에서는 내부구조물인 교각이 존재하는 영역에서의 수평 2차원 유속분포를 구하기 위해 천수방정식을 Galerkin법과 Newton-Raphson법에 의해 이산화한 수치모형을 개발하였다. Yulistiyanto 등(1998)이 수치모의 및 수리실험에 사용한 조건을 채택하여 벽면에서의 접선방향 유속이 존재하는 활동조건과 벽면에서 유속이 없는 무활조건을 부여하고 교각을 포함한 수로에서 유속, 수위 및 전단분포를 해석하였다. 활동경계조건을 적용한 경우 교각 표면을 따라 큰 유속이 분포하고 후면에서도 관성력에 의해 흐름방향 유속이 두드러지게 나타났으나 무활조건을 적용한 경우 교각 후면에서 와가 형성되고 후류현상이 두드러지게 나타났다. 무활조건을 적용한 경우 교각 전면부에서는 선수파(bow wave)가 4 cm정도 높게 나타났으며 교각 측면부에서는 2 cm 높게 나타났다. 반면 교각 후면에서는 후류의 영향으로 수면이 2 cm 낮게 분포하였다. 교각부에 작용하는 전단력을 분석한 결과 무활조건을 적용한 경우가 활동조건을 적용한 경우에 비해 최대 6배 높은 전단력이 나타났다.

  • PDF

Seasonal Variations of EWT and COP of GWHP System Using the Bank Infilterated Water from Stream-Alluvial Aquifer System (하천-충적대수층계의 강변여과수를 열원으로 이용하는 지하수 열펌프 시스템의 계절별 입구온도와 효율성 평가)

  • Hahn, Chan;Jeon, Jae-Soo;Yoon, Yoon-Sang;Han, Hyok-Sang;Hahn, Jeong-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.39-51
    • /
    • 2007
  • Unconsolidated and permeable alluvial deposit composed of sand and gravel is distributed along the fluvial plain at the Iryong study area. Previous studies on the area show that a single alluvial well can produce at least 1,650m3d-1 of bank infilterated shallow groundwater(BIGW) from the deposit. This study is aimed to evaluate and simulate the influence that seasonal variation of water levels and temperatures of the river have an effect on those of BIGW under the pumping condition and also to compare seasonal variation of COPs when indirectly pumped BIGW or directly pumped surface water are used for a water to water heat pump system as an heat source and sink using 3 D flow and heat transport model of Feflow. The result shows that the magnitude influenced to water level of BIGW by fluctuation of river water level in summer and winter is about 48% and 75% of Nakdong river water level separately. Seasonal change of river water temperature is about $23.7^{\circ}C$, on other hand that of BIGW is only $3.8^{\circ}C$. The seasonal temperatures of BIGW are ranged from minimum $14.5^{\circ}C$ in cold winter(January) and maximum $18.3^{\circ}C$ in hot summer(July). It stands for that BIGW is a good source of heat energy for heating and cooling system owing to maintaining quite similar temperature($16^{\circ}C$) of background shallow groundwater. Average COPh in winter time and COPc in summer time of BIGW and surface water are estimated about 3.95, 3.5, and about 6.16 and 4.81 respectively. It clearly indicates that coefficient of performance of heat pump system using BIGW are higher than 12.9% in winter time and 28.1% in summer time in comparision with those of surface water.

  • PDF

Analysis of Communication Signal Transfer Channel Characteristics in Shallow Water. (천해에서 채널의 통신신호 전달 특성 분석)

  • Ju, Hyng-Jun;Han, Jung-Woo;Kim, Ki-Man
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1534-1542
    • /
    • 2009
  • In this paper we achieve experimental data evaluation using SSB(Single-side band) modulation in the ocean. Present research in underwater communication is applying digital modulation, OFDM(Orthogonal Frequency Division Modulation) and MIMO(Multiple Input Multiple Output) system. However, Commercial modems using analog modulation techniques in oceans. So, we achieved experimental for modem appliance development of correct high quality in South Korea sea characteristics. This experimets achievd useing SSB analog modulation in Jin-hae shore of shallow water condition. We analyzed Doppler effects, reverberation and transmission characteristics for real channel effect analysis. As a result, reverberation and ships self-noise are disturbed factors for underwater communications.

Deformation of Non-linear Dispersive Wave over the Submerged Structure (해저구조물에 대한 비선형분산파의 변형)

  • Park, D.J.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.75-86
    • /
    • 1998
  • To design a coastal structure in the nearshore region, engineers must have means to estimate wave climate. Waves, approaching the surf zone from offshore, experience changes caused by combined effects of bathymetric variations, interference of man-made structure, and nonlinear interactions among wave trains. This paper has attempted to find out the effects of two of the more subtle phenomena involving nonlinear shallow water waves, amplitude dispersion and secondary wave generation. Boussinesq-type equations can be used to model the nonlinear transformation of surface waves in shallow water due to effect of shoaling, refraction, diffraction, and reflection. In this paper, generalized Boussinesq equations under the complex bottom condition is derived using the depth averaged velocity with the series expansion of the velocity potential as a product of powers of the depth of flow. A time stepping finite difference method is used to solve the derived equation. Numerical results are compared to hydraulic model results. The result with the non-linear dispersive wave equation can describe an interesting transformation a sinusoidal wave to one with a cnoidal aspect of a rapid degradation into modulated high frequency waves and transient secondary waves in an intermediate region. The amplitude dispersion of the primary wave crest results in a convex wave front after passing through the shoal and the secondary waves generated by the shoal diffracted in a radial manner into surrounding waters.

  • PDF

Geochemical and Geophysical Characteristics of Shallow Gases in the Deep Sea Sediments, Southwestern Ulleung Basin (울릉분지 남서부 심해저 퇴적층에 분포하는 천부 가스의 지화학 및 지구물리 특성)

  • 김일수;이영주;유동근;류병재
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.149-157
    • /
    • 2003
  • Deep sea core samples were taken in the southwestern part of the Ulleung Basin in order to characterize the properties of shallow gases in the sediment. Amount of shallow gases in the sediments were calculated by head space techniques, and chemical and isotopic compositions of hydrocarbon gases were analyzed. Geochemical analyses were carried out on the gas bearing sediments to find out relationship between natural gas contents and organic characteristics of the sediments. Seismic characteristics of shallow gases in the sediments were also examined in this study. The amount of the hydrocarbon gases in the sediments range from 0.01% to 11.25%. Calculation of volume of gas per volume of wet sediment varies from 0.1 to 82.0 ml HC/L wet sediment. Methane consists 98% of the total hydrocarbon gases except for two samples. Based on the methane content and isotopic composition$(\delta^{13}c)$: -94.31$\textperthousand$~-55.5$\textperthousand$), the hydrocarbon gases from the sediments are generated from bacterial activities of methanogenic microbes. Contents of hydrocarbon gases are variable from site to site. Volume of shallow gases in the sediments shows no apparent trends vs. either characteristics of organic matter or particle sizes of the sediments. Gas concentration is high in the area of seismic anomalies such as blanking zone or chimney structures in the section. Physicochemically the pore water and the formation water systems are saturated with gases in these areas. Concentration of hydrocarbon gases in the sediments in these area shows favorable condition for generation of gas hydrate, as far as the other conditions are satisfied.

Numerical Simulation of Tsunamis that Affected the Coastal Zone of East Sea (동해연안에 영향을 미친 지진해일의 수치시뮬레이션)

  • Kim, Do-Sam;Kim, Ji-Min;Lee, Kwang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.72-80
    • /
    • 2007
  • The tsunami that resulted from the Central East sea Earthquake, which registered 7.7 on the Richter scale, that occurred over the entire water region in Akita on May. 26, 1983 and the tsunami that was triggered by the Southwest off Hokkaido Earthquake (7.8 on the Richter scale) that occurred in Southwest off Hokkaido on July 12, 1993 are representative cases that led to considerable damage in life and property, not only in Japan but also in Korea. In this study, multi-grid method was used in order to reproduce sufficiently the shoaling effect that occurs as water depth becomes shallow in the shallow water region and moving boundary condition was introduced to consider the runup in the coastal region. For the tsunamis that exerted considerable effect on the East Sea coast of Korea that were caused by the Central East Sea Earthquake in 1983 and the Southwest off Hokkaido Earthquake in 1993, characteristics like water level rise and propagation in the East Sea coast will be examined using numerical simulations. At the same time, these values will be compared with observed values. In addition, maximum water level rise and change in the water level with respect to time that were caused by the tsunamis were examined at each location along the East sea coast. Usefulness of numerical analysis was verified by comparing with observed values.