• Title/Summary/Keyword: Shale Aggregate

Search Result 12, Processing Time 0.025 seconds

Weathering Properties of Shale Aggregate in Daegu-Kyeongbuk region and Freezing-Thawing Characteristics of Concrete in response to Usage of Shale Aggregate (대경권 셰일 골재의 풍화특성 및 셰일 골재 사용량에 따른 콘크리트의 동결융해 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.4033-4038
    • /
    • 2013
  • Sedimentary rocks from construction waste are discarded through open storage and landfilling, which causes an increase in construction cost and inefficient of execution of works. Some sandstone are selected and utilized as aggregates, but shale is buried as industrial waste. Therefore, in this research, we evaluated weathering properties of shale aggregate that is widely distributed throughout Daegu-Kyeongbuk region and freeze-thaw characteristics of concrete according to the replacement ratio of shale aggregate, in an effort to stabilize aggregate supply-demand in Daegu-Kyeongbuk region and develop alternative aggregates. We used red shale and black shale in the experiment, which were exported from a construction site in Deagu. We verified the usage of shale as a concrete aggregate by comparing andesite, which is broadly used as a thick aggregate for concrete, to hornfels, which is a metamorphic sedimentary rock. As a result of the experiment, we observed no degradation phenomenon for andesite and hornfels. However, a part of country rock containing black shale was found to be exfoliated. Red shale started having cracks in the direction of stratification after 1.5 months of direct exposure, and it broke into smaller pieces after approximately 4 months. After 300 cycles of freeze-thaw process on the concrete manufactured according to the replacement ratio of shale aggregate, the modulus of elasticity was 97% for plain and 95% for hornfels. In the case of RS_100, it was 57% after 210 cycles, and for BS_100, it was 54% after 240 cycles. Therefore, we established that, as the number of repetition increases, the freeze-thaw resistance decreases dramatically.

Physical Properties of Shale Aggregate and Characteristics of Concrete in Replacement Ratio in Daegu-Kyeongbuk Region (대경권 셰일 골재의 물성 평가 및 치환율 변화에 따른 콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Yeo, In-Dong;Choi, Jong-Oh;Bae, Su-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5551-5557
    • /
    • 2012
  • Sedimentary rocks dug up in construction fields are mostly stockpiled for landfill disposal, leading to an increase in construction costs and construction inefficiency. After screening, some of the sandstone can be used as aggregate; however, most of the shale ends up as industrial waste in practice. In this study, to stabilize the demand and develop resources for alternative aggregates of concrete, the potential use of shale, which is widely distributed in the Daegu-Kyeongbuk region, as a concrete aggregate was evaluated. Red and black shale exported from a Daegu excavation site was selected for use in the experiments and evaluated by comparing with hornfels, which is widely used as a coarse aggregate and is a type of andesite and metamorphosed sedimentary rock. The physical properties of the aggregate were evaluated in accordance with the test methods of KS F 2527 "crushed concrete aggregate," and the compressive strength against the shale aggregate replacement ratio was measured. The compressive strength of the concrete after 28 days was 30.8 MPa when the black shale replaced 100% of the aggregate in the concrete and 31.1 MPa when the red shale replaced 100% of the aggregate in the concrete. Compared with the compressive strength of 37.5 MPa for concrete prepared by using plain aggregate, using shale as a substitute for the aggregate produced an average compressive strength that was 82% of normal concrete.

A Study on Improving the Performance of Shale for Application of Aggregate for Concrete (콘크리트용 골재활용을 위한 셰일 골재의 성능개선에 관한 연구)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5915-5922
    • /
    • 2013
  • In this study, with the aim of improving the performance of shale to allow for its use as coarse aggregate for concrete, we coated shale aggregates with water repellents and polymers and evaluated their physical properties such as density, water absorption rate, wear rate, and stability depending on the coating method. In addition, the effects of the performance improvement were evaluated by assessing the properties of fresh concrete produced by varying the shale substitution ratio, as well as the compressive strength, flexural strength, and freeze-thaw resistance according to curing ages. The test results revealed that the absolute dry densities of all coated aggregates satisfied the standard density for coarse aggregates for concrete(>$2.50g/cm^3$),and the absorption rate of the shale aggregate coated with water repellent decreased by about 50% compared with that of uncoated shale. The wear rate of the polymer-coated shale decreased by up to 13.0% compared with that of uncoated shale. All coated aggregates satisfied the stability standard for coarse aggregates for concrete(${\leq}12$). The water repellent-induced performance improvement decreased the shale aggregates' slump by about 20~30mm compared with that of the uncoated shale aggregates, and the air content of the repellent-coated shale aggregate increased by up to 0.9% compared with that of the uncoated shale aggregate. The compressive strength of the polymer-coated shale aggregates at a curing age of 28 days was RS(F) 95.7% and BS(F) 90.0%, and the flexural strength was RS(F) 98.0 % and BS(F) 92.0% of the corresponding values of concretes produced using plain aggregates. Furthermore, the concrete using polymer-coated shale aggregates showed a dynamic modulus of elasticity of RS(F) 91% and BS(F) 88% after 300 freeze-thaw cycles, thus demonstrating improved freeze-thaw durability.

Properties of Unsaturated Polyester Mortar Using Shale as Fine Aggregates (혈암을 잔골재로 사용한 불포화 폴리에스터 모르터의 특성)

  • 박준철;배근철;최영준;서인식;김화중;김영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.129-134
    • /
    • 2001
  • The purpose of this study is to investigate properties of unsaturated polyester mortar using the shale as find aggregates. To evaluate properties of unsaturated polyester mortar using crushed sand from Black shale, Red shale, Gray shale, we peformed the experiment according the F/B ratio of 25, 30, 35% and the volume of fine aggregate of 50, 53, 56%. The Result of this study is as follows. the strength of unsaturated polyester mortar is higher than those of river sand. The F/B ratio is higher and the volume of find aggregate is lower, the strength of unsaturated polyester mortar is higher

  • PDF

Analysis on Component and Mechanical Characteristics for Crushed Stone of Excavated Rocks( I ) (지하굴착암 쇄석의 성분 및 역학적 특성 분석( I ))

  • 이상호;차완용;김영수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.74-82
    • /
    • 2003
  • In this paper, an experimental program was undertaken to test the analysis on Component and mechanical characteristics for crushed stone of excavated Rocks from Sandstone, Shale, Mudstone, for use as a new source of aggregate. Physical and mechanical properties, required for aggregate materials, of major constituents of rock wastes including Sandstone, Shale, Mudstone, Felsite, Basalt, Marl were measured in the laboratory Test results showed that the Shale, Felsite, Basalt tested in this study might possibly be used for construction aggregates. In case of Sandstone and Mudstone, some physical properties such as rock strength were generally adoptable but the aggregate characteristics were lower than required.

Experimental Study on the Foaming Characteristics according to the Plastic Temperature and the Retention Time of Shale (혈암의 소성온도 및 체류시간에 따른 발포특성에 관한 실험적 연구)

  • Mun, Dong Hwan;Lee, Han Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.58-59
    • /
    • 2018
  • In this study, firing experiments were carried out to confirm the foamability of the expansive shale collected from the local area. When expansive shales are subjected to high temperature heat, gas is generated inside and voids are formed. Due to this phenomenon, shale is used as a raw material for lightweight aggregate. Experiments were carried out with different plastic temperature and residence time to find the appropriate plastic temperature for this expansive shale. As a result, the higher the plastic temperature, the more the surface viscosity increased and the gas generated inside were retained. Resulting in a number of internal voids. However, even if the plastic temperature or the medium temperature is high, it is confirmed that sufficient gas is not generated when the residence time is shortened.

  • PDF

Enhancement of mechanical and durability properties of preplaced lightweight aggregate concrete

  • Bo Peng;Jiantao Wang;Xianzheng Dong;Feihua Yang;Chuming Sheng;Yunpeng Liu
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.419-430
    • /
    • 2023
  • In this study, the effect of two types of aggregates (fly ash aggregate and shale aggregate) on the density, strength, and durability of preplaced lightweight aggregate concrete (PLWAC) was studied. The results showed that the 7 - 28 days strength of concrete prepared with fly ash aggregates (high water absorption rate) significantly increased, which could attribute to the long-term water release of fly ash aggregates by the refined pore structure. In contrast, the strength increase of concrete prepared with shale aggregates (low water absorption rate) is not apparent. Although PLWAC prepared with fly ash aggregates has a lower density and higher strength (56.8 MPa @ 1600 kg/m3), the chloride diffusion coefficient is relatively high, which could attribute to the diffusion paths established by connected porous aggregates and the negative over-curing effect. Compared to the control group, the partial replacement of fly ash aggregates (30%) with asphalt emulsion (20% solid content) coated aggregates can reduce the chloride diffusion coefficient of concrete by 53.6% while increasing the peak load obtained in a three-point bending test by 107.3%, fracture energy by 30.3% and characteristic length by 103.5%. The improvement in concrete performance could be attributed to the reduction in the water absorption rate of aggregates and increased energy absorption by polymer during crack propagation.

Evaluation on Reuse of Excavated Rocked from Construction Field of Taegu Subway (대구지하철 굴착암에 대한 재활용 평가)

  • 차완용;이상호;김영수;방인호
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.252-257
    • /
    • 1999
  • The distinguished geological characteristic of Taegu area is consist of anisotropic shale or sedimentary rock. Therefore if rocks are used for construction, it would've some difficulties of reuse showing the aspect of resource engineering. We made physical and mechanic properties for rock discrimination and then whether it had utilization worth or not. So we studied the engineering propriety through the aggregate tests based on rock's in laboratory. The last passed aggregate were D, E and B1 at KS and the rest couldn't use the place where weather phenomenon is caprice. This sis for base-line data of aggregate development research before the porpriety investigation for aggreagte of excavated rock in Taegu area.

  • PDF

Experimental Evaluation of the Punching Shear Strength with Lightweight Aggregate Concrete Slabs (경량골재 콘크리트 바닥판의 펀칭전단강도의 실험적 평가)

  • Kim, Jung-Joong;Moon, Ji-Ho;Youm, Kwang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.361-367
    • /
    • 2014
  • This paper investigates the punching shear strength of lightweight aggregate concrete (LWAC) slabs through a series of experimental study. Five full scale slabs were constructed using normal concrete and four different types of LWAC. Each lightweight aggregate (LWA) used in this study had different sources (clay, shale, or slate) and shapes (crushed or spherical shape). Based on the test results, the effect of the lightweight aggregates (LWA) on the punching shear behavior was investigated. From the test results, it was found that the punching shear failure surface of LWAC slab with spherical shape coarse aggregate was less inclined than that with crushed shape coarse aggregate, which resulted in an increase of the area of the shear failure surface. As a result, it leads to the increased punching shear strength of the slab. On the other hand, the failure surfaces of LWAC slab with crushed shape coarse aggregate and normal coarse aggregate were inclined similarly. Finally, the test results of this study were compared with the punching shear strength obtained from current design models, such as ACI and CEB-FIP, to examine the validation of current design model to predict the punching shear strength of the LWAC slab.

Geology and Distribution of Crushed Aggregate Resources in Korea (국내 골재석산의 분포와 유형 분석)

  • Hong Sei Sun;Lee Chang Bum;Park Deok Won;Yang Dong Yun;Kim Ju Yong;Lee Byeong Tae;Oh Keun Chang
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.555-568
    • /
    • 2004
  • The demand of aggregate resources in Korea has been increased with a rapid economic growth since the 1980s. About 25% of the total aggregate production is derived from riverine aggregates, 20% to 25% from marine sands, 40% to 45% from crushed aggregate and the rest 5% to 15% from old fluvial deposits. The abundance of crushed coarse aggregates varies in the uniform distribution of country, but in general it can be concentrated in the most densely populated areas, five main cities. Typical rock types of the Korean crushed stones are classified as plutonic rocks of 27%, metamorphic rocks of 32%, sedimentary rocks and volcanic rocks of 18%, respectively. The most abundant coarse aggregate used in the country is obtained from granite (25% of total) and subordinately gneiss (20%), sandstone (10%) and andesite (10%). Although rock types using as dimension stone are only fifteen, those as aggregate amount up to twenty nine rocks. These rocks consist of plutonic rocks such as granite, syenite, diorite, aplite, porphyry, felsite. dike and volcanic rocks such as rhyolite, andesite, trachyte, basalt, tuff, volcanic breccia and metamorphic rocks such as gneiss, schist, phyllite, slate, meld-sandstone, quartzite, hornfels, calc-silicate rock, amphibolite. And sandstone, shale, mudstone, conglomerate, limestone, breccia, chert are main aggregate sources in tile sedimentary rocks. The abundance of plutonic rocks is the highest in Chungcheongbuk-do, and decreases as the order of Jeollabuk-do, Gangwon-do and Gyeonggi-do. In Jeollanam-do, volcanic aggregates occupy above 50%, on the contrary sedimentary aggregates are above 50% in Gyeongsangnam-do.