• Title/Summary/Keyword: Shaking frequency

Search Result 196, Processing Time 0.038 seconds

Oxygen Transfer Rate from Liquid Free Surface in Reciprocally Shaking Vessel (왕복요동 교반조의 자유 표면에서의 산소흡수속도)

  • Koh, Seung-Tae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.276-280
    • /
    • 2021
  • The oxygen transfer rate at the liquid surface of the reciprocally shaking vessel was studied. The required power of the reciprocally shaking vessel was not proportional to the shaking frequency, unlike the rotational shaking vessel, and the liquid level suddenly fluctuated greatly at a certain frequency as the flow pattern in the vessel was a left and right wave flow different from that of the rotational shaking that has a rotational flow. The effect of the shaking frequency on the required power in the reciprocally shaking vessel was very complex, such as less power required than the rotational shaking vessel when the shaking frequency is more than 3 s-1, but the required power for the range of the generated rotational flow in the reciprocally shaking vessel could be correlated with the equation that was reported for the rotational shaking vessel. The kLa (mass transfer capacity coefficient) in the reciprocally shaking vessel also increased in a complex pattern because the required power for shaking was not consumed in a simple pattern, unlike kLa in the rotational shaking vessel, which increases linearly with increasing frequency. The kLa of the reciprocally shaking vessel was larger than the kLa of the rotational shaking vessel, and as the kLa value increased, the difference between them increased sharply. As a result, the oxygen transfer rate in the reciprocal motion was greater than that of the rotational motion, and could be correlated with the required power per unit volume.

Experimental damage evaluation of prototype infill wall based on forced vibration test

  • Onat, Onur
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.77-90
    • /
    • 2019
  • This paper aims to investigate vibration frequency decrease (vibration period elongation) of reinforced concrete (RC) structure with unreinforced infill wall and reinforced infill wall exposed to progressively increased artificial earthquake load on shaking table. For this purpose, two shaking table experiments were selected as a case study. Shaking table experiments were carried on 1:1 scaled prototype one bay one storey RC structure with infill walls. The purpose of this shaking table experiment sequence is to assess local behavior and progressive collapse mechanism. Frequency decrease and eigen-vector evolution are directly related to in-plane and out-of-plane bearing capacities of infill wall enclosure with reinforced concrete frame. Firstly, frequency decrease-damage relationship was evaluated on the base of experiment results. Then, frequency decrease and stiffness degradation were evaluated with applied Peak Ground Acceleration (PGA) by considering strength deterioration. Lastly, eigenvector evolution-local damage and eigenvector evolution-frequency decrease relationship was investigated. Five modes were considered while evaluating damage and frequency decrease of the tested specimens. The relationship between frequency decrease, stiffness degradation and damage level were presented while comparing with Unreinforced Brick Infill (URB) and Reinforced Infill wall with Bed Joint Reinforcement (BJR) on the base of natural vibration frequency.

Iterative Feed-forward Control of Shaking Table System Based on FRF of Hydraulic Actuator (유압 서보 구동기의 동특성을 고려한 진동 시험기의 반복 피드포워드 제어)

  • Lee, Dong-Jae;Park, Young-Jin;Park, Youn-Sik;Kim, Hyoung-Eui;Park, Jong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.556-560
    • /
    • 2007
  • In this paper, the research results for the improvement of tracking performance of a hydraulic shaking table are presented. A servo-hydraulic shaking table is not only highly nonlinear but also has a lot of time delay. In addition, the shaking table, which consists of multi axial hydraulic actuators, is a MIMO system coupled by kinematics and dynamics of each other's actuators. And it is demanded for the shaking table to track arbitrary trajectories up to high frequency even at the extreme situations such as substantial external loads and large disturbances. For this purpose, an iterative feed-forward control based on the inverse of a measured frequency response function is used for the shaking table. To solve the dynamic coupling, a pressure feedback control as numerical damping is used. It is shown through numerical simulations that the tracking performance of shaking table is improved up to 100Hz.

  • PDF

Development of the similitude law considering the intensity-dependent variation of natural frequency of pile foundation system (말뚝 기초 고유진동수의 가속도 크기 의존성을 고려한 상사법칙 개발)

  • Choi, Jung-In;Yoo, Min-Teak;Kim, Sung-Yul;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.905-912
    • /
    • 2009
  • 1-g shaking table test is conducted to evaluate the dynamic behavior of a soil-structure system under seismic loading condition. A consistent similitude law between the model and prototype is needed to predict the behavior of the prototype structure, quantitatively. The natural frequency of geomaterial decreases with the increase of shaking intensity because of the non-linear property of the geomaterial. This phenomenon affects the applicability of similitude laws in 1-g shaking table tests. In this study, a simple method is suggested to determine the frequency of the input motions in 1-g tests in order to enhance the applicability of similitude laws. Modified input frequency is calculated using the frequency ratio with consideration of the variation of the natural frequency according to the intensity of input ground acceleration. To verify the applicability of the suggested method, a series of 1-g shaking table tests were performed for three different sizes of model piles having an overburden mass on their heads by varying the acceleration and the frequency of input motion. The acceleration amplification ratio on the overburden mass, the lateral displacement at the pile head and the maximum bending moment along the pile depth were measured. The projected behaviors of the virtual prototype based on the measured values of the model tests, where the input frequencies were calculated by the new method, showed good consistency, verifying the applicability of the suggested method.

  • PDF

Detachment Rate of Fruits of Lycium chinense Mill with Vibration Characteristic (진동특성에 의한 구기자 열매의 탈과율)

  • 서정덕;허윤근;이상우
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.151-158
    • /
    • 2000
  • Detachment rate of mature fruits of the Lycium chinense Mill with various frequency, amplitude, and shaking time using an experimental vibratory system was analyzed. The experimental vibratory system was designed such that the frequency, amplitude, and shaking time could be controlled easily. The detachment rate increased as the frequency increased at constant amplitude and increased as the amplitude increased at constant frequency. The contents of the detached immature fruit, however, also increased as the frequency and amplitude increased, which was undesirable for the detachment efficiency considering the only mature 900 rpm and amplitude of 35 m for the shaking time of three seconds.

  • PDF

Characteristics of Flow Pattern and Mass Transfer in a Shaking Vessel with Figure-Eight Circulating Motion (8자 진동교반에 의한 교반조내 유동상태 및 물질전달 특성)

  • Lee, Young Sei;Kato, Yoshihito
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.174-180
    • /
    • 2015
  • The flow pattern and the solid-liquid mass transfer coefficient in figure-eight shaking vessels were observed by experimental method. The flow patterns, mixing time, power consumption and mass transfer coefficient in the figureeight shaking vessels changed irregularly with increase in the shaking frequency. Any frequency, even in the Fr = 0.095 or more became clear experimentally. The region of the optimum operating condition of the figure-eight shaking was larger than that of the reciprocal shaking. The solid-liquid mass transfer coefficient was correlated with the same correlation as that of the rotary shaking vessel of existing. The gas-liquid mass transfer coefficient of the figure-eight shaking vessel was also correlated with the same type of correlation as that of the rotary shaking vessel of existing.

Quantification of Oxygen Transfer in Test Tubes by Integrated Optical Sensing

  • Wittmann, Christoph;Schutz, Verena;John, Gernot;Heinzle, Elmar
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.991-995
    • /
    • 2004
  • Immobilized sensor spots were applied for online measurement of dissolved $O_2$, in test tubes. Oxygen transport was quantified at varied shaking frequency and filling volumes. The k$_{L}$ a increased with increasing shaking frequency and decreasing filling volume. In non-baffled tubes the maximum $k_{L}a$ value was $70h^{-1}$, equivalent to a maximum $O_2$ transfer capacity of 15mMh^{-1}$. Monitoring of the hydrodynamic profile revealed that the liquid bulk rotated inside the tube with an inclined liquid surface, whereby the angle between the surface and tube wall increased with increasing shaking frequency. The $k_{L}a$ clearly correlated to the surface area. Placement of four baffles into the tubes improved the oxygen transfer up to 3-fold. The highest increase in $k_{L}a$ was observed at high filling volume and high shaking frequency. The maximum $k_{L}a$ in baffled tubes was $100 h^{-1}$.

Shaking Table Test of a Full Scale 3 Story Steel Frame with Friction Dampers (마찰형 감쇠장치가 설치된 실물크기 3층 철골프레임의 진동대 실험)

  • Bae, Chun-Hee;Kim, Yeon-Whan;Lee, Sang-Hyun;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.862-873
    • /
    • 2007
  • Energy dissipation devices can be considered as an alternative for the seismic performance enhancement of existing structures based on the strengthened seismic design code. In this study, seismic response mitigation effects of friction dampers are investigated through the shaking table test of a full scale 3 story building structure. Frist, the bilinear force-displacement relationship of a structure-brace-friction damper system and the effect of brace-friction damper on the increase of frequency and damping ratio are identified. Second, frequency, displacement, and torque dependent characteristics of the friction damper are investigated by using harmonic load excitation tests. Finally, the shaking table tests are performed for a full scale 3 story steel frame. System identification results using random signal excitation indicated that brace-friction damper increased structural damping ratio and frequency, and El Centro earthquake test showed that brace-friction damper reduced the peak displacement and acceleration significantly. In particular, it was observed that the damping effect due to friction damper becomed obvious when the structure was excited by more intensive load causing frequent slippage of the friction dampers.

Critical Suspension Condition of Particles in a Shaking Vessel of Solid-Liquid System (고-액계 진동교반에서 입자의 부유화 한계조건)

  • Lee, Young-Sei;Kim, Moon-Gab;Kato, Yoshihito
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.73-81
    • /
    • 1999
  • Shake mixing has been widely used in cell culture. The mixing performance for shake mixing, however, has not been reported quantitatively. The critical circulating frequency and the power consumption for complete suspension of particles, based on the definition of Zwietering, were measured in a shaking vessel containing a solid-liquid system. The critical suspension frequency was correlated by the equation from Baldi's particle suspension model modified with the physical properties of the particles. Critical suspension frequency was correlated as following ; $$N_{JS}={\frac{0.58\;d{_p}^{0.06}(g{\Delta}{\rho}/{\rho}_L)^{0.004}X^{0.03}}{D^{0.35}d^{0.17}{\upsilon}^{0.04}}}$$ The power consumption at the critical suspension condition in the shaking vessel was less than that in an agitated vessel with impeller.

  • PDF

Evaluation of MCC seismic response according to the frequency contents through the shake table test

  • Chang, Sung-Jin;Jeong, Young-Soo;Eem, Seung-Hyun;Choi, In-Kil;Park, Dong-Uk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1345-1356
    • /
    • 2021
  • Damage to nuclear power plants causes human casualties and environmental disasters. There are electrical facilities that control safety-related devices in nuclear power plants, and seismic performance is required for them. The 2016 Gyeongju earthquake had many high-frequency components. Therefore, there is a high possibility that an earthquake involving many high frequency components will occur in South Korea. As such, it is necessary to examine the safety of nuclear power plants against an earthquake with many high-frequency components. In this study, the shaking table test of electrical facilities was conducted against the design earthquake for nuclear power plants with a large low-frequency components and an earthquake with a large high-frequency components. The response characteristics of the earthquake with a large high-frequency components were identified by deriving the amplification factors of the response through the shaking table test. In addition, safety of electrical facility against the two aforementioned types of earthquakes with different seismic characteristics was confirmed through limit-state seismic tests. The electrical facility that was performed to the shaking table test in this study was a motor control center (MCC).