• Title/Summary/Keyword: Shake table

Search Result 129, Processing Time 0.027 seconds

Dynamic Responses of Base Isolation Devices for Telecommunication Equipment in Building Structures (건축물 내 방송통신설비를 위한 면진장치의 동적거동)

  • Jeong, Saebyeok;Choi, Hyoung-Suk;Seo, Young-Deuk;Jung, Donghyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2022
  • In earthquake situations, broadcasting and communication services are directly linked to rapid on-site rescue and effective restoration works. Recently, a variety of base isolation devices are widely introduced on building floors to avoid critical seismic damages of telecommunication facilities. However, in buildings with long fundamental periods, those devices may have undesirable amplification of seismic responses due to resonance effect between the building floors and base isolation devices. This study performs the seismic safety evaluation of two types of base isolation devices deployed for telecommunication facilities in mid- and high-rise buildings through numerical and experimental approaches. It is found that mid- and high-rise buildings can have low-frequency dynamic responses at the top floor when being subjected to design basis earthquake loading. Furthermore, bi-directional shake table testing demonstrated that the selected base isolation devices can exhibit unstable dynamic behaviors under such low-frequency excitations of the floor.

The Vibration Comfort Evaluation of the Shaking Table Mass Foundation (진동대 반력기초의 진동사용성 평가)

  • Choi, Hyoung-Suk;Jung, Da-Jung;Kim, Seong-Do;Cheung, Jin-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.53-60
    • /
    • 2011
  • When designing building structures, dynamic serviceability is one of the most important items. Much research is being carried out on machine vibrations that affect inside residents and expensive equipment in the building structure. The vibration effect generally depends on the mass ratio, and an adequate mass ratio is determined by comparison with the serviceability limit according to the criteria. This study investigates the evaluation of vibration serviceability by using ISO 2631 to confirm the propriety of adequate mass ratios and it is verified that the application of a complicated FE model to model the real large shaking table facility with the mathematical model simulated as a SDOF system. The weighted RMS value is then compared with the comfort limit given by ISO 2631. As a result, the analysis of the numerical model is consistent with analysis of the FE model. Moreover, it is found that the adequate mass ratio of the concrete foundation and shake table, considering the self-weight of the real facility, should be less than 0.013. It is also confirm that the sample facility is satisfies the requirement of an adequate mass ratio.

Detailed Finite Element Analysis of Full-scale Four-story Steel Frame Structure subjected to Consecutive Ground Motions

  • Tagawa, Hiroyuki;Miyamura, Tomoshi;Yamashita, Takuzo;Kohiyama, Masayuki;Ohsaki, Makoto
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • Detailed finite element (FE) analyses of a full-scale four-story steel frame structure, subjected to consecutive 60% and 100% excitations from the JR Takatori records during the 1995 Hyogoken-Nanbu earthquake, are conducted using E-Simulator. The four-story frame was tested at the largest shake-table facility in the world, E-Defense, in 2007. E-Simulator is a parallel FE analysis software package developed to accurately simulate structural behavior up to collapse by using a fine mesh of solid elements. To reduce computational time in consecutive dynamic time history analyses, static analysis with gravity force is introduced to terminate the vibration of the structure during the analysis of 60% excitation. An overall sway mechanism when subjected to 60% excitation and a story mechanism resulting from local buckling of the first-story columns when subjected to 100% excitation are simulated by using E-Simulator. The story drift response to the consecutive 60% and 100% excitations is slightly smaller than that for the single 100% excitation.

Influence of uplift on liquid storage tanks during earthquakes

  • Ormeno, Miguel;Larkin, Tam;Chouw, Nawawi
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.311-324
    • /
    • 2012
  • Previous investigations have demonstrated that strong earthquakes can cause severe damage or collapse to storage tanks. Theoretical studies by other researchers have shown that allowing the tank to uplift generally reduces the base shear and the base moment. This paper provides the necessary experimental confirmation of some of the numerical finding by other researchers. This paper reports on a series of experiments of a model tank containing water using a shake table. A comparison of the seismic behaviour of a fixed base system (tank with anchorage) and a system free to uplift (tank without anchorage) is considered. The six ground motions are scaled to the design spectrum provided by New Zealand Standard 1170.5 (2004) and a range of aspect ratios (height/radius) is considered. Measurements were made of the impulsive acceleration, the horizontal displacement of the top of the tank and uplift of the base plate. A preliminary comparison between the experimental results and the recommendations provided by the liquid storage tank design recommendations of the New Zealand Society for Earthquake Engineering is included. The measurement of anchorage forces required to avoid uplift under varying conditions will be discussed.

A nonlinear structural experiment platform with adjustable plastic hinges: analysis and vibration control

  • Li, Luyu;Song, Gangbing;Ou, Jinping
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.315-329
    • /
    • 2013
  • The construction of an experimental nonlinear structural model with little cost and unlimited repeatability for vibration control study represents a challenging task, especially for material nonlinearity. This paper reports the design, analysis and vibration control of a nonlinear structural experiment platform with adjustable hinges. In our approach, magnetorheological rotary brakes are substituted for the joints of a frame structure to simulate the nonlinear material behaviors of plastic hinges. For vibration control, a separate magnetorheological damper was employed to provide semi-active damping force to the nonlinear structure. A dynamic neural network was designed as a state observer to enable the feedback based semi-active vibration control. Based on the dynamic neural network observer, an adaptive fuzzy sliding mode based output control was developed for the magnetorheological damper to suppress the vibrations of the structure. The performance of the intelligent control algorithm was studied by subjecting the structure to shake table experiments. Experimental results show that the magnetorheological rotary brake can simulate the nonlinearity of the structural model with good repeatability. Moreover, different nonlinear behaviors can be achieved by controlling the input voltage of magnetorheological rotary damper. Different levels of nonlinearity in the vibration response of the structure can be achieved with the above adaptive fuzzy sliding mode control algorithm using a dynamic neural network observer.

Response of structure with controlled uplift using footing weight

  • Qin, X.;Chouw, N.
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.555-564
    • /
    • 2018
  • Allowing structures to uplift in earthquakes can significantly reduce or even avoid the development of plastic hinges within the structure. The permanent deformations in the structure can thus be minimized. However, uplift of footings can cause additional horizontal movements of a structure. With an increase in movement relative to adjacent structures, the probability of pounding between structures increases. This experimental study reveals that the footing mass can be used to control the vertical displacement of footing and thus reduce the horizontal displacements of an upliftable structure. A four storey model structure with plastic hinges and uplift capability was considered. Shake table tests using ten different earthquake records were conducted. Three different footing masses were considered. It is found that the amplitude of footing uplift can be greatly reduced by increasing the mass of the footing. As a result, allowing structural uplift does not necessary increase the horizontal displacement of the structure. The results show that with increasing footing weight, the interaction between structural and footing response can increase the contribution of the higher modes to the structural response. Consequently, the induced vibrations on secondary structure increase.

Testing of tuned liquid damper with screens and development of equivalent TMD model

  • Tait, M.J.;El Damatty, A.A.;Isyumov, N.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.215-234
    • /
    • 2004
  • The tuned liquid damper (TLD) is increasingly being used as an economical and effective vibration absorber. It consists of a water tank having the fundamental sloshing fluid frequency tuned to the natural frequency of the structure. In order to perform efficiently, the TLD must possess a certain amount of inherent damping. This can be achieved by placing screens inside the tank. The current study experimentally investigates the behaviour of a TLD equipped with damping screens. A series of shake table tests are conducted in order to assess the effect of the screens on the free surface motion, the base shear forces and the amount of energy dissipated. The variation of these parameters with the level of excitation is also studied. Finally, an amplitude dependent equivalent tuned mass damper (TMD), representing the TLD, is determined based on the experimental results. The dynamic characteristics of this equivalent TMD, in terms of mass, stiffness and damping parameters are determined by energy equivalence. The above parameters are expressed in terms of the base excitation amplitude. The parameters are compared to those obtained using linear small amplitude wave theory. The validity of this nonlinear model is examined in the companion paper.

Seismic performance of concrete frame structures reinforced with superelastic shape memory alloys

  • Alam, M. Shahria;Nehdi, Moncef;Youssef, Maged A.
    • Smart Structures and Systems
    • /
    • v.5 no.5
    • /
    • pp.565-585
    • /
    • 2009
  • Superelastic Shape Memory Alloys (SMAs) are gaining acceptance for use as reinforcing bars in concrete structures. The seismic behaviour of concrete frames reinforced with SMAs is being assessed in this study. Two eight-storey concrete frames, one of which is reinforced with regular steel and the other with SMAs at the plastic hinge regions of beams and regular steel elsewhere, are designed and analyzed using 10 different ground motion records. Both frames are located in the highly seismic region of Western Canada and are designed and detailed according to current seismic design standards. The validation of a finite element (FE) program that was conducted previously at the element level is extended to the structure level in this paper using the results of a shake table test of a three-storey moment resisting steel RC frame. The ten accelerograms that are chosen for analyzing the designed RC frames are scaled based on the spectral ordinate at the fundamental periods of the frames. The behaviour of both frames under scaled seismic excitations is compared in terms of maximum inter-storey drift, top-storey drift, inter-storey residual drift, and residual top-storey drift. The results show that SMA-RC frames are able to recover most of its post-yield deformation, even after a strong earthquake.

Decentralized civil structural control using real-time wireless sensing and embedded computing

  • Wang, Yang;Swartz, R. Andrew;Lynch, Jerome P.;Law, Kincho H.;Lu, Kung-Chun;Loh, Chin-Hsiung
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.321-340
    • /
    • 2007
  • Structural control technologies have attracted great interest from the earthquake engineering community over the last few decades as an effective method of reducing undesired structural responses. Traditional structural control systems employ large quantities of cables to connect structural sensors, actuators, and controllers into one integrated system. To reduce the high-costs associated with labor-intensive installations, wireless communication can serve as an alternative real-time communication link between the nodes of a control system. A prototype wireless structural sensing and control system has been physically implemented and its performance verified in large-scale shake table tests. This paper introduces the design of this prototype system and investigates the feasibility of employing decentralized and partially decentralized control strategies to mitigate the challenge of communication latencies associated with wireless sensor networks. Closed-loop feedback control algorithms are embedded within the wireless sensor prototypes allowing them to serve as controllers in the control system. To validate the embedment of control algorithms, a 3-story half-scale steel structure is employed with magnetorheological (MR) dampers installed on each floor. Both numerical simulation and experimental results show that decentralized control solutions can be very effective in attaining the optimal performance of the wireless control system.

Seismic responses of a metro tunnel in a ground fissure site

  • Liu, Nina;Huang, Qiang-Bing;Fan, Wen;Ma, Yu-Jie;Peng, Jian-Bing
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.775-781
    • /
    • 2018
  • Shake table tests were conducted on scaled tunnel model to investigate the mechanism and effect of seismic loadings on horseshoe scaled tunnel model in ground fissure site. Key technical details of the experimental test were set up, including similarity relations, boundary conditions, sensor layout, modelling methods were presented. Synthetic waves and El Centro waves were adopted as the input earthquake waves. Results measured from hanging wall and foot wall were compared and analyzed. It is found that the seismic loadings increased the subsidence of hanging wall and lead to the appearance and propagation of cracks. The values of acceleration, earth pressure and strain were greater in the hanging wall than those in the foot wall. The tunnel exhibited the greatest earth pressure on right and left arches, however, the earth pressure on the crown of arch is the second largest and the inverted arch has the least earth pressure in the same tunnel section. Therefore, the effect of the hanging wall on the seismic performance of metro tunnel in earth fissure ground should be considered in the seismic design.