• Title/Summary/Keyword: Shafts

Search Result 566, Processing Time 0.022 seconds

Design of Drilled Shafts (현장타설말뚝의 설계)

  • 김명학;김원철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11a
    • /
    • pp.140-167
    • /
    • 2002
  • A drilled shaft is a deep foundation that is constructed by placing fluid concrete in a drilled hole. Reinforcing steel can be installed in the excavation, if desired, prior to placing the concrete. Drilled shafts provide excellent foundation systems for civil structures. In order to utilize them effectively, it is essential that designers have a clear understanding for how drilled shafts are constructed and also understand the basis for design methods. This paper describes standard design methods for drilled shafts.

  • PDF

A Study on the Evaluation of Mechanical Behavior of Golf Shafts (골프 샤프트의 역학적 거동 평가에 관한 연구)

  • 정성교;윤형택;정성균;임승규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.44-47
    • /
    • 2002
  • A liner static and dynamic analysis for a golf shaft, which is made of carbon fiber reinforced composite materials, is presented in this study. Major mechanical parameters of golf shafts such as deflection, torsional angel, frequency of vibration(CPM), and kick point are analyzed by finite element method. The effects of major parameters on the performance of golf shafts are also discussed. The results show that the major parameters of golf shafts are strongly dependent on the material properties of fibers and design pattern of golf shafts. The present results will be useful to design sheet-rolled golf shafts.

  • PDF

Non-Contact Damage Detection of Rotating Shafts by Using the Magnetostrictive Effect (마그네토스트릭션 효과를 이용한 회전축의 비접촉 결함진단)

  • Kim, Yun-Yeong;Han, Sun-U;Lee, Ho-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1599-1607
    • /
    • 2002
  • The purpose of this work is to suggest a new non-contact damage detection method for rotating ferromagnetic shafts. The presence and the location of a damage in rotating shafts are assessed by means of longitudinal elastic waves propagating along the shafts. These waves are measured by non-contact magnetostrictive sensors consisting of a coil and bias magnets. This paper shows the effectiveness of the sensors in the damage detection of rotating shafts. Several issues occurring in the application of the sensors to rotating shafts are carefully investigated.

A Study on the Grinding Characteristics of Carbon Fiber Epoxy Composite Hollow Shafts (탄소섬유 에폭시 복합재료 중공축의 연삭 특성에 관한 연구)

  • 김포진;이대길;한흥삼;이동주
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.36-45
    • /
    • 1999
  • Since carbon fiber epoxy composite materials have excellent properties for structures due to their high specific strength, high modulus, high damping and low thermal expansion, the hollow shafts made of carbon fiber epoxy composites have been widely used for power transmission shafts for motor vehicles, spindles of machine tools and rollers for film manufacturing. However, the molded composite shafts are not usually accurate enough for mechanical machine elements, which require turning or grinding of composite hollow shafts. In this paper, the grinding characteristics of composite hollow shafts, which are flexible in the radial and circumferential directions, were investiaged experimentally and analytically with respect to the stacking angle, thickness and outer diameter.

  • PDF

Seismic performance evaluation of Pier-Shafts system with multi-layered soil (다양한 지반층을 갖는 Pier-Shafts 시스템의 내진성능평가)

  • Jang, Sung-Hwan;Nam, Sang-Hyeok;Song, Ha-Won;Kim, Byung-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.69-72
    • /
    • 2008
  • The so-called Pier-Shafts system which consists of the continuous column and shaft is often used to support the highway bridge structure because of advantages in easy construction and low cost. In the earthquake region, the Pier-Shafts system undergoes large displacements and represents a nonlinear behavior under the lateral seismic loading. The soil-pile interaction should be considered for more accurate analysis of the Pier-Shafts system. In this study, a transverse response of a reinforced concrete Pier-Shafts system inside multi-layered soil medium is predicted using a finite element program which adopts an elasto-plastic interface model for the interface behavior between the shaft and the soil. Then, seismic analysis is performed to evaluate the performance of Pier-Shafts system under strong ground motion and their results are verified with experimental data.

  • PDF

A Numerical Study on the Effect of Steel Casing on Bearing Capacity of Drilled Shafts for Marine Bridges (수치해석을 이용한 국내 해상교량 현장타설말뚝의 강관지지효과)

  • Lee, Juhyung;Shin, Hyu-Soung;Park, Minkyung;Park, Jae Hyun;Kwak, Kiseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.149-158
    • /
    • 2008
  • This study is concerned with the characteristics of the behavior of drilled shafts with steel casing, a material that is used for large bridge foundations in Korea, and especially for weak submerged ground conditions. The effect of steel casing on bearing capacity of drilled shafts was also verified in this study. Three large drilled shafts with 1.8, 2.4, 3.0m diameter respectively were selected, and 3-D finite element analysis has been undertaken on the following three models: 1) drilled shafts without steel casing, 2) drilled shafts with steel casing, 3) steel-concrete composite drilled shafts. Interface element between concrete core and steel casing was taken into account, and ground conditions and load combinations were applied which had been considered in the fields. Detailed characteristics of the stress and displacement distributions were evaluated to understand the characteristics of the behavior of the drilled shafts. Based on the study performed, the steel casing used as load-carrying materials in the drilled shafts can reduce the horizontal and vertical displacement of drilled shafts by 32~37% and 15~19% respectively compared with drilled shafts without steel casing.

Assessment of End Condition of Drilled Shafts Socketed into Rock by Impact Echo Test (충격반향기법을 이용한 암반근입 현장타설말뚝의 선단조건 평가)

  • 김형우;김동수;김원철
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.21-32
    • /
    • 2002
  • Small and full scale model tests were performed to obtain the transient responses of shafts subjected to elastic impact by impact-echo test. Four end conditions of drilled shafts were considered: (1) free, (2) fixed, (3) rock-socketed, and (4) soft bottom. In small scale model tests, mock-up shafts were fabricated to simulate these four drilled shafts using poly-urethane and plastic material. Additionally, skin frictions between shaft and rock were changed to find out the effect of side contact on dynamic responses. All impact responses were tested in the air. Subsequently, full scale model tests were also carried out on concrete shafts that were in free and rock-socketed condition. The end conditions of the drilled shafts could be identified with good reliability by the waveforms from both small and full scale model tests. The results obtained in this study will provide an improved understanding of the impact responses for end conditions, especially for rock-socketed drilled shafts that are frequently designed and built in Korea.

Comparative field tests on uplift behavior of straight-sided and belled shafts in loess under an arid environment

  • Qian, Zeng-zhen;Lu, Xian-long;Yang, Wen-zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.141-160
    • /
    • 2016
  • This study elucidates the uplift behaviors of the straight-sided and belled shafts. The field uplift load tests were carried out on 18 straight-sided and 15 belled shafts at the three collapsible loess sites under an arid environment on the Loess Plateau in Northwest China. Both the site conditions and the load tests were documented comprehensively. In general, the uplift load-displacement curves of the straight-sided and belled shafts approximately exhibited an initial linear, a curvilinear transition, and a final linear region, but did not provide a well defined peak or asymptotic value of the load, and therefore their uplift resistances should be interpreted from the load test results using an appropriate criterion. Nine representative uplift resistance interpretation criteria were used to define the "interpreted failure load" for each of the load tests, and all of these interpreted uplift resistances were normalized by the failure threshold, $T_{L2}$, obtained using the $L_1-L_2$ method. These load test data were compared statistically and graphically. For the straight-sided and belled shafts, the normalized uplift load-displacement curves were respectively established by the plots that related the mean interpreted uplift resistance ratio against the mean displacement at the corresponding interpreted criteria, and the comparisons of the normalized load-displacement curves were made. Specific recommendations for the designs of uplift belled and straight-sided shafts in the loess were given, in terms of both capacity and displacement.

Design and Quality Assurance Tests of Drilled Shafts of High Rise Buildings (고층 건물 현장타설말뚝기초의 설계 및 품질확인시험)

  • Cho, Chun-Whan;Seok, Jeong-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.585-592
    • /
    • 2006
  • Recently, many high rise buildings is planning and under construction over the world. The drilled shafts as a foundation of high rise buildings are often adopted fur the purpose of construction safety and construction cost effectiveness. It is common that the capacity of drilled shafts is beyond conventional conception. The reasonable design and quality assurance for the drilled shaft as foundation of high rise building become much more important since the drilled shafts should bear much higher working load. This paper reviews state of the art of the design and quality assurance for the drilled shafts as foundation of high rise buildings. And also some related suggestions are given in this paper.

  • PDF

Buckling and postbuckling behavior of solid superelastic shape memory alloy shafts

  • Rahman, Muhammad Ashiqur;Qiu, Jinhao;Tani, Junji
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.339-352
    • /
    • 2006
  • Observing the unique stress-strain curves of the superelastic shape memory alloy (SMA) in tension and compression, the primary intention of this study is to investigate the behavior of the shafts made of the same material, under torsional loading-unloading cycles for large angle of twist. Experiments have been performed for the superelastic SMA shafts with different unsupported lengths and angles of twist and the results are compared with those of stainless steel (SUS304) shafts under similar test conditions. As expected for the superelastic SMA, the residual strains are small enough after each cycle and consequently, the hysteresis under loading-reverse loading is much narrower than that for the SUS304. For large angle of twists, the torsional strength of the superelastic SMA increases nonlinearly and exceeds that of SUS304. Most interestingly, the slender solid superelastic SMA shafts are found to buckle when acted upon torsion for large angle of twist.