• 제목/요약/키워드: Shaft vibration

검색결과 651건 처리시간 0.03초

Noise and Fault Diagonois Using Control Theory

  • Park, R. W.;J. S. Kook;S. Cho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.301-307
    • /
    • 1998
  • The goal of this paper is to describe an advanced method of the fault diagnois using Control Theory with reference to a crack detection, a new way to localize the crack position under infulence of the plant disturbance and white measurement noise on a rotating shaft. As a first step, the shaft is physically modelled with a finite element method as usual and the dynamic mathematical model is derived from it using the Hamilton - principle and in this way the system is modelled by various subsystems. The equations of motion with crack is established by adaption of the local stiffness change through breathing and gaping from the crack to the equation of motion with un-damaged shaft. This is supposed to be regarded as reference for the given system. Based on the fictitious model of the time behaviour induced from vibration phenomena measured at the bearings, a nonlinear State Observer is designed in order to detect the crack on the shaft. This is elementary NL- observer(EOB). Using the elementary observer, an Estimator(Observer) Bank is established and arranged at the certain position on the shaft. In case a crack is found and its position is known, the procedure for the estimation of the depth is going to begin.

  • PDF

후륜 구동 차량의 급가속 시 구동계 진동 저감 (Driveline Vibration Reduction of FR(front engine rear wheel drive) Vehicle at Rapid Acceleration)

  • 김용대
    • 한국소음진동공학회논문집
    • /
    • 제24권8호
    • /
    • pp.592-599
    • /
    • 2014
  • A torsional vibration at driveline happens seriously at rapid vehicle acceleration. The torsional vibration at driveline can be reduced by optimization of joint angle and yoke phase angle of driveline. But, the joint angle of driveline is changed according to vehicle driving condition as acceleration, deceleration, forward and backward driving, so that excessive vibration is transmitted to vehicle body at specific driving condition. Especially under rapid acceleration condition, vibration transmitted to body could be maximized because excitation force at rapid acceleration is bigger than that at normal driving condition due to changed joint angle. The torsional vibration of driveline can be kept at low level by controlling suspension parameter to minimize rigid axle displacement as well as optimizing joint angles considering the vehicle acceleration condition.

소형추진축계에서 스트레인 게이지를 이용한 휘둘림 진동에 대한 계측 및 평가 (Measurement and Assessment of Whirling Vibration using Strain Gage in Small Propulsion Shafting System)

  • 김진희;김준성;김태언;이돈출
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.527-532
    • /
    • 2011
  • Whirling vibration in severe cases may result in shaft cracking and typically gap sensors are utilized to confirm its values under the outside underwater of ship. The bending stress value causing whirling vibration on the propulsion shafting system of a 40-ton small vessel was verified by theoretical analysis and its vibration measurement. However, because of underwater condition, the accuracy for this measurement method is presumed low. In this study, the strain gauge basic principle and the bending stress calculation method are considered. The relationships are then applied for obtaining the whirling vibration of the 40-ton small vessel. As a result, a new method in estimation of whirling vibration is reached and suggested.

  • PDF

전동드릴의 진동특성 및 전파경로 해석 (Vibration Characteristics and Its Propagation Path Analysis of an Electric Drill)

  • 조윤수;김도현;최연선
    • 한국소음진동공학회논문집
    • /
    • 제11권9호
    • /
    • pp.422-430
    • /
    • 2001
  • An electric drill is a handy tool used in a machine shop, which consists of motor, gear, bearing, shaft, and case, i.e., a gear driving system. Low level vibration and noise of the electric drill can bring the assurance of the quality and reliability of the machine. The vibration sources of the electric drill should be investigated for the reduction of the vibration and noise of the system. Through the experiments in laboratory and the various signal processing procedure for the measured vibration and sound signals, the characteristics of the vibration of the electric drill are investigated. And its propagation path is sought using partial coherence function.

  • PDF

산업용 로봇의 소음/진동 저감 연구 (A Study of Industrial Robot for the Noise and the Vibration Reduction)

  • 이광열;정진태;정두한;임흥순;김영환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.146-151
    • /
    • 2002
  • The object of this study is an examination of source of robot noise and reduction of the noise and the vibration for an industrial robot system. As the first step in our study, the noise and the vibration from the robot are measured by microphones and by accelerometers and the source of the noise and the vibration are proved to be from the gear, shaft, and housing from the experiments. The occurrence of the noise may be classified according into kinds, Finally base on the result of the experiments, we consider a countermeasure for reducing the noise and the vibration of robot system by the parametric study.

  • PDF

산업용 로봇의 소음/진동 저감 연구 (A Study of Industrial Robot for the Noise and the Vibration Reduction)

  • Lee, Kwangyal;Jintai Chung;Duhan Jung;Yim, Hueng-Soon;Kim, Young-Hwin
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.321.1-321
    • /
    • 2002
  • The object of this study is an examination of source of robot noise and reduction of the noise and the vibration for an industrial robot system. As the frist step in our study, the noise and the vibration from the robot are measured by microphones and by accelerometers and the source of the noise and the vibration are proved to be from the gear, shaft, and housing from the experiments. The occurrence of the noise may be classified according into kinds, Finally base on the result of the experiments, we consider a countermeasure fur reducing the noise and the vibration of robot system by the parametric study.

  • PDF

전동드릴의 진동특성 및 전파경로 해석 (Vibration Characteristics and its Propagation Path Analysis of an Electric Drill)

  • 김도현;조윤수;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.166-171
    • /
    • 2001
  • An electric drill is a handy tool used in a machine shop, which consists of motor, gear, bearing, shaft, and case, i.e., a gear driving system. Low level vibration and noise of the electric drill can bring the assurance of the quality and reliability of the machine. The vibration sources of the electric drill should be investigated for the reduction of the vibration and noise of the system. Through the experiments in a laboratory and the various signal processing procedure for the measured vibration and sound signals, the characteristics of the vibration and noise of the electric drill are investigated. And its propagation path is sought using partial coherence technique.

  • PDF

NC선반 기어박스의 기어열 - 축계 진동해석 (Vibration Analysis of a Gear Train - Spindle System for an NC Lathe Gear Box)

  • 최영휴;박선균;배병태;정택수;김청수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.216-221
    • /
    • 2000
  • In this study, two mathematical models are first constructed to analyze vibration characteristics of a gear train - spindle system of an NC lathe gear box. One is a lumped parameter model which is used for calculating natural frequencies of the torsional vibration, the other is a finite element model for analyzing lateral vibration and critical speeds of the spindle system. In addition, this study examines some possible resonance conditions such as gear mesh frequencies, 1X shaft rpm frequencies over whole operating speed range, and so on. The results may be helpful to design a machine tool gear box with low noise and vibration.

  • PDF

추진축이 센터베어링으로 지지된 차량 구동계의 출발시 진동해석 (Vibration Analysis of Driveline with Propeller Shaft Supported by Center Bearing when the Vehicle Starts)

  • 이창노;김효준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1043-1048
    • /
    • 2002
  • This paper considers the vibration problem of vehicle driveline which consists of two propeller shafts and the center bearing. The excessive vibration occurs at the center bearing when the vehicle starts to run. Using the kinematic constraints at the universal joint between two propeller shafts, we develop an one d.o.f model which describes the radial motion of the center bearing. We find out the vibration occurs at the specific vehicle speed corresponding to the natural frequency of the model. Comparing the simulation results with test results we also show that the vibration at low vehicle speed is caused primarily by the joint angle and secondarily by the mis-aligned yoke flange rather than by the unbalance.

  • PDF