• 제목/요약/키워드: Shaft torsional torque

검색결과 53건 처리시간 0.021초

비틀림짙동 저감을 위한 추진축 설계에 관한 연구 (A Study on the Design of Propeller Shaft for Reduction of Torsional Vibration)

  • 최은오;안병민;홍동표;정태진
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.221-228
    • /
    • 1999
  • A full-time four wheel drive vehicle is driven literally full time by the front and the rear wheels. Front and rear drive shafts are rotated rapidly in the extremely torsional state, which can cause various vibration and noise problems. The purpose of this study is to reduce the vibration and the noise of the full -time four wheel drive vehicle. In this paper, both the causes and the methods for reduction of torsional vibration are suggested. For this study, the characteristics of the torsional vibration are analyzed by free and forced torsional vibration simulation. And this paper described the influence upon the torsional vibration with emphasis shafting system. The validity of simulation models is checked by the field test. The forced vibration simulation with the variations of shaft design factors are performed by the checked models. According to the simulation , the resonance region shifts and the torque fluctuation varies in the system,. Finally, the methods and the effects for the torsional vibration reduction in driveline are proposed.

  • PDF

자동차용 복합재료 드라이브샤프트 설계 및 성형 연구 (Design and Manufacturing of Composite Drive Shaft for Automobiles)

  • 김태욱;이상관;전의진;김완두;이대길
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.109-117
    • /
    • 1993
  • A carbon/epoxy composite drive shaft used for the power transmission of the automobiles with steel joints. Compared with the metallic drive shaft, the composite one has the weight saving of 50% with equivalent torsional strength and fatigue characteristics. In this study, the filament winding technique for the composite tube and composite/metal joining technique are estabilished. The performance test of the drive shaft is carried out. The optimal condition of the surface roughness of the steel adherend was $1.5{{\mu}m}$ to $2.5{{\mu}m}$, and the optimal condition of the bonding thickness was 0.15mm. Maximum torque and torsional stiffness of the composite drive shaft manufactured by filament winding process were found to be $210kg{\cdot}m$ and $18.5kg{\cdot}m/deg$, respectively.

  • PDF

고주파 열처리를 고려한 액슬 축 비틀림 거동 연구 (Study on Torsional Strength of Induction-Hardened Axle Shaft)

  • 강대현;이범재;윤창배;김강욱
    • 대한기계학회논문집A
    • /
    • 제34권5호
    • /
    • pp.645-649
    • /
    • 2010
  • 고주파열처리(induction hardening)는 엔진의 구동력을 차동장치에서 바퀴까지 전달해주는 부품인 액슬축(axle shaft)의 비틀림 강도를 증가시키기 위해 적용되는 열처리 방법이다. 고주파 열처리 과정의 급속가열과 급속냉각은 소재에 잔류응력과 물성치를 변화시켜 액슬축의 허용 전달토크를 변화시킨다. 본 연구에서는 고주파 열처리한 액슬축의 잔류응력의 분포와 열처리 깊이에 따른 비틀림 강도 변화를 열물성 및 상변태를 고려한 유한요소 해석을 통해 예측하였으며 이를 시험과 비교하였다.

디젤기관 착화실패가 크랭크축계 비틀림 진동에 미치는 환경의 이론적 고찰 (A theoretical investigation of misfiring effects on the crankshaft torsional vibration of diesel engine)

  • 전효중;임영복
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.94-106
    • /
    • 1986
  • Since the oil shock of '70s the engine makers have developed new types of diesel engine with low fuel consumption. There is an obvious tendency towards the use of poorer quality fuels, such as the residual oil from chemical processes of refinery. The shaft driving generators is also widely adopted on behalf of the auxiliary diesel engines, which are driving on the expensive diesel oil and have high fuel oil consumption rates, and some mania propulsion diesel engines are equipped with reduction gear systems to get better propulsive efficiency by slower propeller revolutions. The propulsion shafting system equipped with the shaft driving generator or the geared diesel engine shafting system has flexible couplings, and it requires extensive investigations of the torsional vibration and torque fluctuation in order to ensure the acceptable operation range in service. The characteristics of misfiring must be especially examined for the high viscosity fuels to be used. Both torsional vibration and fluctuating torque resulted from misfiring, should be examined for thier effects on the flexible coupling and propulsion shafting system. This paper is to investigate and solve the above mentioned problems which must be predicted on the design-stage of marine propulsion shafting system. A computer program is developed to calculate the indicated diagram, fluctating torque and torsional vibration for both normal and misfiring conditions.

  • PDF

차량 클러치 스프링 댐퍼의 진동 전달률 해석 및 측정 (Vibration Transmissibility Analysis and Measurement of Automotive Clutch Spring Dampers)

  • 장재덕;김기우;김원진
    • 한국소음진동공학회논문집
    • /
    • 제23권10호
    • /
    • pp.902-908
    • /
    • 2013
  • The input torque ripple induced by combustion engines is a significant source of NVH(noise, vibration and harshness) problem in automotive transmissions. Because this torque fluctuation is primarily transmitted to the input shaft of automotive powertrains(e.g., automatic transmissions) when the lock-up clutches are closed, a torsional damper with helical springs is generally inserted between engine and transmissions to isolate the input vibratory energy, which is essential for the passenger comfort. The torsional vibration isolator exhibits frequency ranges in which there is low vibration transmissibility. However, the isolation performance is currently evaluated through the static torsional spring characteristics. In this study, the transmissibility of torsional spring dampers, essential dynamic performance index for vibration isolator, is first experimentally evaluated.

크랭크축 비틀림진동점성댐퍼의 설계와 댐퍼 성능시뮬레이션프로그램개발 (A study on the design of the torsional vibration viscous damper for the crankshaft and developing of its performance simulation computer program)

  • 이충기;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.77-96
    • /
    • 1989
  • In diesel engines, it is inevitable that the torsional vibration is produced by the fluctuation of engine torque. Therefore, if the occurence of torsional vibration is confirmed in the design stage or the torsional vibration is observed on the bed of test run, it is necessary to establish some preventive measures to avoid dangerous conditions. Major preventive measures are as follows : 1. Changing the natural frequency of shaft system. 2. Repressing the vibration amplitude by the damping energy. 3. Counterbalancing the exciting torque by the resistant torque. 4. Counterbalacing the harmonic component of exciting energy. In above methos, the damper is the last measure to be used for controlling the torsional vibration. In this thesis, the design of viscous damper that absorbs the exciting energy is investigated and a number of problems associated with the design of viscous damper are treated and a computer pregram for the process of damper design is developed. A viscous damper for a high speed diesel engine is designed and its effect is simulated by the author's computer program.

  • PDF

후륜구동 승용차의 디퍼렌셜 진동저감에 관한 연구 (A Study on the Reduction of Differential Vibration of FR Passenger Car)

  • 최은오
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.316-321
    • /
    • 1997
  • The purpose of this study is to reduce the vibration noise of differential gear by reducing torque fluctuation of drive pinion shaft which causes vibration noise of differential gear in rear wheel drive vehicles. For this we developed multi-degree of freedom analysis model in which mass moment of inertia and torsional spring combined, the validity of the simulation model was checked by the field test and we examined the influence of torsional vibration of driveline elements by performing forced vibration analysis of engine excitation torque. We studied the methods for reducing torsional vibration of driveline according to the design factor of propeller shaft and examined the effects reducing vibration differential gear by applying flexible coupling.

  • PDF

엔진과 추진축의 비틀림 가진력에 관한 해석적 연구 (An Analytical Study on Torsional Excitation Force of an Engine and Propeller Shaft)

  • 김병삼;장일도;이봉구;문상돈
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.1-7
    • /
    • 2007
  • Torque fluctuation of an engine and angular velocity variation of a propeller shaft are the main excitation sources in a vehicle driveline. This paper presents the mechanism of these excitation sources. An equivalent model of the engine system and propeller shaft system is constructed to simulate the excitation phenomena. The analytical model contains the geometrical and dynamic mechanism. Combustion pressure of the cylinder is measured from dynamometer. The computer simulation is carried out by commercial program package. Results of the simulations show the characteristics of the torsional excitation source of the driveline.

차량 동력 전달계의 비틀림 가진원에 관한 실험적 연구 (An Experimental Study on the Torsional Excitation Source of the Vehicle Driveline)

  • 장일도;김병삼
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.865-870
    • /
    • 2005
  • Torque fluctuation of the engine and angular velocity variation of propeller shaft is the main excitation source for torsional vibration in the vehicle driveline. Experimental model for engine system is constructed with 4 cylinder 4 cycle diesel engine including Motor-Propeller Shaft-Axle-Wheel system. The angular velocity is measured by magnetic pickup and FV converter at the engine flywheel and propeller shaft. This paper presents the theoretical mechanism of these excitation sources and it is identified by the experimental methods.

비선형 탄성커플링을 갖는 기관축계의 비틀림강제진동에 관한 연구 (A Study on the Forced Torsional Vibration of Engines Shafting Systems with Non-linear Elastic Couplings)

  • 박용남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.328-336
    • /
    • 1998
  • Marine reduction gears are usually used to increase the propulsion efficiency of propellers for ships powered by medium and small sized high speed diesel engines. Most of shaft systems adopt flexible couplings to absorb the transmitted vibratory torque from the engines to the reduction gears and to prevent the chattering phenomenon of reduction gears. However some elastic couplings show non-linear characteristics due to the variable torque transmitted from the main engines and the change of ambient temperature. In this study dynamic characteristics of flexible couplings sare investigated and their effects upon various vibratory conditions of propulsion systems are clarified. A calculation program of torsional vibration for the propulsion systems are clarified. A calculation program of Results of the program developed are compared with ones of the existing linear method and propulsion systems with the elastic couplings the transfer matrix method is adopted which is found to give satisfied results.

  • PDF