• Title/Summary/Keyword: Shaft misalignment

Search Result 62, Processing Time 0.03 seconds

A Study on the Stern Bearing Damage and Shaft Alignment for 37K DWT Product/Chemical Tanker (37K DWT 석유화학제품 운반선의 선미관 베어링 발열 사고 및 축계정렬에 대한 연구)

  • Park, Geumsung;Koh, Changik;Chung, Jaewook;Nam, Gunsik;Chae, Junsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.97-104
    • /
    • 2021
  • Together with the emerging of the Eco-ship, the application of large-diameter and high-efficiency propeller required more careful attention than before in the design of the shafting system. After the adoption of Environmentally Acceptable Lubricants (EAL) to the stern tube lubrication oil, a number of aft stern tube bearing accidents have been reported, and a variety of institutions have actively conducted research on the cause relationship. This study attempted to find the cause of the accident by measuring the alignment of the shafting system of a medium-sized product/chemical tanker with aft stern tube bearing damage and analyzing the reaction force of each bearing. In addition, a reasonable solution to the correction of the shaft alignment was suggested and the feasibility was reviewed. Through various measured data and analysis, the actual installation of shafting system was slightly different from the design drawing condition, but it was found that each bearing load distribution was within the allowable range. Therefore, it was confirmed that the cause of this accident was due to the dissatisfaction the misalignment slope of aft stern tube bearing rather than the effect of the bearing overload. As a solution to this cause, countermeasures such as double slope were suggested in the aft stern tube bearing, and the characteristics of EAL also seem to have an indirect effect.

Development of Reducer for Generating Facility of Electric Power for Low Noise/vibration (소음/진동을 고려한 발전설비용 감속기 개발)

  • Lee, Hyoung-Woo;Park, Chul-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.73-82
    • /
    • 2008
  • A dynamic model of reducer for generating facility of electric pourer having bevel gear pair and planetary gear train is developed by lumped method. The model accounts for the shaft and bearing flexibilities, gyroscopic effects and the force couplings among the transverse and torsion motions due to gearing. Vibration/noise analysis as well as strength of bevel gear pair and planetary gear train are considered. Exciting forces of high reducer for generating facility of electric power areconsidered as the mass unbalance of the rotors, misalignment and a function of gear transmission error. A Campbell diagram, in which the excitation sources caused by the mass unbalance of the rotors, misalignment and the transmitted errors of the gearing are considered, shows that, at the operating speed, there are not critical speed.

Control of Internal Packing Seal Clearances Considering for Shaft Behavior During Steam Turbine Operation (증기터빈 운전중 축 거동을 고려한 내부단 패킹실의 틈새 관리)

  • Pack, Min-Sik;Lee, Si-Yeon;Yang, Bo-Suk;Choi, Sung-Choul;Lee, Jae-Geun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1715-1720
    • /
    • 2004
  • This paper presents the characteristics of internal clearances for the interstage of blades and shaft gland seals on the steam turbine which are installed in tandem compound. Internal clearances was changed when the rotor turned in the cylindrical sleeve bearing due to the generation of oil film wedge. This presented concern is very useful to prevent the rubbing damage of seal edge between the fixed and moving parts in steam turbine due to the misalignment at the rotating and stationary parts. This method is applied for the unbalanced clearances distribution to the left and right sides in the turbine casing. A considerable amount of unbalanced clearances distribution trend is determined according to the rotating speed of rotor, size and type of proceeding bearing, oil viscosity, surface roughness of bearing and shaft, oil temperature, oil pressure and bearing load.

  • PDF

Improvement of Rotor Axes Arrangement under the Static State by using Straingage Method (Straingage법에 의한 정적 상태에서의 회전체 축정렬 방법 개선)

  • 김경석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.117-122
    • /
    • 1998
  • The misalignment state causes some problems in operating. These problems such as vibration, noise, make the reduce wear, as well as, a stress concentration on the coupling which is the very weakness point at the morter. In order to align the shaft, the dialgage method has used as a means of solution until now. The method using a dialgage require a great deal of labour and money due to making by hand, the accurate alignment is not up to the expectation. For aligning the shaft, all the rotor must come to accord. Also, the dialgage method cannot be compared with straingage measurement method, from the viewpoint, which can gage in short time.

  • PDF

Optimum Design of a Flexible Matrix Composite Driveshaft Using Genetic Algorithms (유전자 알고리즘을 이용한 유연 복합재 구동축의 최적 설계)

  • 홍을표;신응수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.109-115
    • /
    • 2003
  • This study intends to provide an optimum design of flexible matrix composite driveshafts using a genetic algorithm. An objective function is defined as a combination of shaft flexibility, whirling stability and torsional buckling and the design variables are selected as ply angles and the shaft thickness. Results show that the genetic algorithm can successfully find an optimum solution at which the overall performance of the FMC shafts is significantly enhanced

  • PDF

Fault Detection Analysis by Using a Machinery Fault Simulator (기계 결함 시뮬레이터(MFS)를 이용한 결함 신호 분석)

  • Bae Taehan;Jang Sukdong;Song Chul Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.126-131
    • /
    • 2005
  • This paper presents experimental results by using the machinery fault simulator which is monitoring its conditions with an acceleration signal. Components of the machinery, for example, motor, belt pulley, belt, bearing, and gear, with artificial defects were used for the experiment.

A case study on the optimal shafting alignment concerning bearing stiffness for 10,100 TEU container carrier (베어링 강성을 고려한 10,100 TEU 컨테이너 운반선의 최적 추진축계 배치에 관한 사례 연구)

  • Lee, Jae-Ung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.185-190
    • /
    • 2016
  • Damages of the main engine aftmost bearing and the after stern tube bearing tend to increase due to misalignment. And as the shafting system becomes stiffer due to the large engine power, whereas the hull structure becomes more flexible due to optimization by using high tensile thin steel plates. And this is the reason that more sophisticated shaft alignments are required. In this study, the optimum shafting alignment calculation was carried out, considering the thermal expansion effect, exploiting the sensitivity index, which indicates the reasonable position of forward intermediate shaft bearing for shaft alignment. and as the main subject in this study, the elastic deformation on intermediate shaft and main engine bearings occurred by vertical load of shaft mass were examined thoroughly and analyzed allowable load of bearings, reaction influence numbers of all bearings. As the result, a reliable optimum shafting alignment was derived theoretically. To verify these results, they were referred to the engine maker's technical information of main engine installation and being used shafting alignment programs of both Korean Register of Shipping and Det Norske Veritas, their reliability were reviewed.

Effects of Bearing Internal Clearance on the Load Distribution and Load Sharing in the Pitch Reducer for Wind Turbines (베어링 내부 틈새가 풍력발전기용 피치 감속기의 하중 분포와 하중 분할에 미치는 영향 분석)

  • Kim, Jeong-Kil;Park, Young-Jun;Lee, Geun-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • The pitch reducer consists of several planetary gearsets, and they should have good load distribution over gear tooth flank and load sharing among the planets to improve the durability. This work investigates how bearing internal clearances influence both the load distribution over the gear tooth flank and the planet load sharing. A whole system model is developed to analyze a pitch reducer. The model includes non-linear mesh stiffness of gears, non-linear stiffness of bearings. The results indicate that the face load factor and mesh load factor decrease, and the fatigue life of output shaft bearings increase as bearing internal clearances of output shaft decrease. Therefore, the internal clearance of output shaft bearing must be considered when designing the pitch reducer for wind turbines.

Analysis of Load Distribution and Sharing on the Planetary Reducer for Wind Turbines (풍력발전기용 유성 감속기의 하중 분포 분석)

  • Park, Young-Jun;Lee, Geun-Ho;Kim, Jeong-Kil;Song, Jin-Seop;Park, Sung-Ha
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.830-836
    • /
    • 2011
  • Most of pitch/yaw reducers consist of several planetary geartrains. Planetary geartrains make gearboxes to be small and light, low noise and good efficiency. Most important thing in the planetary geartrain is load distribution on the gear tooth flank. In this study, the effect of output shaft bearings on the load distribution of gear tooth flank has been investigated. The commercial software was employed to compare the load distribution of two models depending on the bearing type. The spherical roller bearing(SRB) and the cylindrical roller bearing(CRB) were used as output shaft bearings in the $1^{st}$ model, and two taper roller bearings(TRB) were used in the $2^{nd}$ model. As a result, it was found that the $2^{nd}$ model. showed better performances on the load distribution of gear tooth flank, this results stated that the output shaft bearing system could be important consideration when designing reducers for wind turbine systems.

Development of High-speed Shaft Coupling for 6 MW Class Offshore Wind Turbine (6 MW급 해상풍력발전기용 고속축커플링 개발)

  • Park, Soo-Keun;Lee, Hyoung-Woo
    • Journal of Wind Energy
    • /
    • v.10 no.4
    • /
    • pp.20-27
    • /
    • 2019
  • High-speed shaft coupling in a wind power system transmits power and absorbs variations in length and spindle dislocation between the gearbox and generator. Furthermore, the coupling has an insulation function that prevents electrical corrosion caused by the flow of the generator's current into the gearbox and prevents overload resulting from sudden power failure from being transferred to the gearbox. Its design, functions, and part verification are described in the IEC61400 and GL Guidelines, which specify that the part must have a durability life of 20 years or longer under distance variation and axial misalignment between the gearbox and the generator. This study presents the design of a high-speed coupling through composite stiffness calculation, structural analysis, and comparative analysis of test and theory to identify the characteristics of high-speed coupling for a large-capacity 6 MW wind power generator. A prototype was fabricated by optimizing the manufacturing process for each part based on the design, and the reliability of the fabricated prototype was verified by evaluating the performance of the target quantitative evaluation items.