• Title/Summary/Keyword: Shaft generator

Search Result 146, Processing Time 0.026 seconds

Simulation and Experiment of Dynamic Torsional Vibration during Grid Low Voltage in a PMSG Wind Power Generation System (PMSG 풍력발전시스템에서 전원 저전압 발생시 비틀림 진동 동특성 시뮬레이션 및 실험)

  • Kwon, Sun-Hyung;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.211-216
    • /
    • 2013
  • A wind generator system model includes wind model, rotor dynamics, synchronous generator, power converter, distribution line and infinite bus. This paper investigates the low-Voltage Ride-Through capability of PMSG wind turbine in a variable speed. The drive train of a wind turbine on 2-mass modeling can observe the shaft torsional vibration when the low-voltage occur. To reduce the torsional vibration when the low-voltage occur, this paper designs suppression control algorithm of the torsional vibration and implements simulation. The simulation based on MATLAB/SIMULINK has validated at the transient state of the PMSG and an experiment using 3kW simulator has validated the LVRT control.

A Numerical Study of Energy Mechanism for Development of Road Generator System (도로용 발전장치 개발을 위한 에너지 발생기구 해석)

  • Lee, Suk Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.935-945
    • /
    • 2014
  • This paper presents a new road generative system that employs a pad of preventive overspeed or tollgate. The system consists of pad, shaft, torsional damper, oneway-clutch, gear system, and electricity generator components. When the car driven through the road generation system, it occurred to surplus energy in the DC power. In order to maximize the power of electricity energy harvester, the simulation software is developed. It is used to determine parametric dimension for optimal design with the theoretically calculated results from the simulation software. The transient responses at the conditions of low and high vehicle speed are compared with the calculated results as torque, impact force, power, out energy etc. Consequently, before design a road generation system, the analysis of simulation results shows that the proposed concept and system has efficiency and confidence.

Adaptive Sliding Mode Observer for DC-Link Voltage Control of Switched Reluctance Generator without Position Sensor (적응 슬라이딩 모드 관측기를 이용한 Switched Reluctance Generator의 위치 센서 없는 구동에 관한 연구)

  • Choi, Yang-Kwang;Kim, Young-Seok;Kim, Young-Jo;Choi, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.179-182
    • /
    • 2002
  • The position information of the rotor are required while the SRG(Switched Reluctance Generator) is drived. The position information is generally provided by shaft encoder or resolver. But it is weak in the dusty, high temperator and EMI environment. Therefore, the sensor is able to required to eliminated from the SRG. In this paper, a estimation algorithm for the rotor position of the SRG is introducted and a constant DC-link voltage is controled by PID controller. The estimation algorithm is implemened by the adaptive sliding observer and that it is able to estimate the rotor position well is proved by the simulation.

  • PDF

Dynamic Response Analysis of a Heavy Duty Gas Turbine-Generator with Rigid Coupling Offset (고정 커플링의 오프셋을 갖는 발전용 가스터빈-발전기의 동적 응답해석)

  • Ha, Jin Woong;Jung, Dae Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.70-75
    • /
    • 2014
  • In this paper a analysis method is presented to obtain the steady state dynamic response from the finite element based equations of a rotor-bearing system with initial deflection. The method has been applied to analyze the dynamic response of the two-shaft rotor-bearing system with rigid coupling offset in a heavy duty gas turbine-generator. Bumps in the dynamic response of each rotor system have been observed at each critical speed due to the effect of initial deflection for rigid coupling offset. And, the dynamic responses have been shown to reduce for operating condition changes from cold to hot.

Transient Control Analysis of Power System by Dynamic Braking (동적제어에 의한 전력계통의 과도제어 특성 해석)

  • 김준현;설용태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.31 no.11
    • /
    • pp.125-132
    • /
    • 1982
  • This paper analyzes the transient control characteristics of power system by dynamic braking. This method, one type of network switching, employs the injection of controllable shunt resistors at or near the generator bus after the disturbances. First, the power system is simulated mathematically for applying the dynamic braking. And the electrical transient control characteristics are considered by controlling the brake size and insertion time. Second, the mechanical torque of turbine-generator is calculted for the mechanical characteristics. This analysis results show that the electrical characteristics are improved but the turbine-generator shaft is impacted by brake switching. However, these problems can be solved by controlling the brake dynamically.

  • PDF

Optimal Excitation Angles of a Switched Reluctance Generator for Maximum Output Power

  • Thongprasri, Pairote;Kittiratsatcha, Supat
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1527-1536
    • /
    • 2014
  • This paper investigates the optimal values of turn-on and turn-off angles, and ratio of flux linkage at turn-off angle and peak phase current positions of optimal control for accomplishing maximum output power in an 8/6 Switched Reluctance Generator (8/6 SRG). Phase current waveform is analyzed to determine optimal excitation angles (optimal turn-on and turn-off angles) of the SRG for maximum output power which is applied from a nonlinear magnetization curve in terms of control variables (dc bus voltage, shaft speed, and excitation angles). The optimal excitation angles in single pulse mode of operation are proposed via the analytical model. Simulated and experimental results have verified the accuracy of the analytical model.

Smart Power Management System for Leisure-ship

  • Park, Do-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.749-753
    • /
    • 2011
  • A leisure ship has a stand-alone type power system, and a generator is in use on this condition. But the generator cannot be operated in condition of leisure activity, ocean measurement and etc, because of environment and noise. Recently, renewable energy system is connected with power system of the leisure-ship for saving energy. The renewable energy system can not supply the stable power to leisure-ship because power generation changes according to weather condition. And most of the leisure ship is operated without methodical power management system. This study's purpose is to develop SPMS(Smart Power Management System) algorithm using the renewable energy (photovoltaic, wind power and etc.). The proposed algorithm is able to supply stable the power according to operation mode. Furthermore, the SPMS manages electric load (sailing and communication equipment, TV, fan, etc.) and reduces operating times of the generator. In this paper, the proposed algorithm is realized and executed by using LabVIEW. As a result, the hour for operating the generator is minimized.

Installed Performance Analysis of a Turboshaft Engine Considering Inlet and Exhaust Losses Estimated by Cfd Technique (CFD 기법에 의해 예측된 흡입구 및 배기구 손실을 고려한 터보축 엔진의 장착성능에 관한연구)

  • Kong Chang-Duk;Owino George Omollo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.106-109
    • /
    • 2006
  • The purpose of this study is to analyze the installed performance of the PW206C turbo shaft engine used in the development of the smart UAV(Unmanned Ariel Vehicle) by KARI(Korean Aerospace Research Institute). It mainly aims to investigate performance behavior at installed conditions using both inlet and exhaust losses generated by CFD analysis of the ducts. The ways employed to be able to analyze the performance extensively were mainly rallied out by performing design point analysis of the engine where the performance simulation results from the commercial program 'GASTURB 9' used for simulation were used as inlet boundary condition for the ducts in CFD program The use of CFD tool involve modeling of the ducts to conform with the stipulated shape and sizes as defined by KARI with a grid density that allows reasonable flow characteristics applicable to aircraft components. Respective values of Shaft horse power obtained by varying flight Mach number, Gas generator RPM and Altitude considering several losses inclusive of those estimated by use of CFD tool were then plotted at three conditions with the ECS-OFF, ECS-MAX and at un-installed condition. Reasonable results were obtained as a result of using computational fluid dynamics that can hence be justified as an alternative tool for use in future flow analysis of engine and components.

  • PDF

Modeling Techniques for The Dynamic Characteristics Analysis of Drivetrain in Wind Turbine (풍력터빈 드라이브트레인의 동특성 해석을 위한 모델링 기법)

  • Lim, Dong-Soo;Lee, Seung-Kyu;Cho, Joon-Haeng;Ahn, Kyong-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.286-289
    • /
    • 2008
  • Wind turbine industry is booming and spending a lot on research for improving the performance of its present machines and increasing their capacity. Wind turbine requires service life of about 20 years and each components of wind turbine requires high durability, because installation and maintenance costs are more expensive than generated electricity by wind-turbine. So the design of wind turbine must be verified in various condition before production step. For this work, high reliability model for analysis is required. Drivetrain model is modeled by multibody dynamic modeling method. The model constituted with rotor blades, hub, main shaft, gear box, high speed shaft and generator. Natural frequency and torsional stiffness of drivetrain are calculated and analyzed.

  • PDF

Firing Order Optimization of Medium Speed Diesel Engine Considering Structure and Shaft Vibration (구조 및 축 진동을 고려한 중속 디젤엔진의 착화순서 최적화)

  • Lee, Soo-Mok;Kim, Won-Hyun;Jung, Kun-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.840-843
    • /
    • 2006
  • The determination of firing order is very significant procedure in initial stage of design for medium speed diesel engine. Generally, the selection of firing order has been accomplished in view of minimum excitation forces condition. In this paper all possible firing orders under the given number of cylinder were considered to decide the optimum. Meanwhile torsional vibration characteristics using the phase vector sum method and minimum excitation force concept were applied. From these results, some superior cases were selected. And then, the torsional vibration response analysis and the resonance characteristics of engine structure were investigated for the final decision.

  • PDF