• Title/Summary/Keyword: Shaft capacity

Search Result 266, Processing Time 0.032 seconds

Effect of verification core hole on tip capacity (확인코어공이 현장타설말뚝의 선단지지력에 미치는 영향)

  • Youn, Hee-Jung;Tonon, Fulvio
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.435-441
    • /
    • 2010
  • In this study, numerical simulations were carried out to investigate the effect of verification core hole on the shaft tip capacity. The verification core extreted at shaft tip may deteriorate the shaft tip capacity when the clay shales (Taylor Marl) surrounding the shaft degrades and the empty core hole remains unfilled. Series of finite element analyses were conducted using Mohr-Coulomb model with total stress material parameters that were obtained from laboratory testing. The numerical analyses indicate that the shaft tip capacity does not decrease for most cases, and the maximum reduction does not exceed 5%.

  • PDF

Improvement of tip analysis model for drilled shafts in cohesionless soils

  • Chen, Yit-Jin;Wu, Hao-Wei;Marcos, Maria Cecilia M.;Lin, Shiu-Shin
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.447-462
    • /
    • 2013
  • An analysis model for predicting the tip bearing capacity of drilled shafts in cohesionless soils is improved in this study. The evaluation is based on large amounts of drilled shaft load test data. Assessment on the analysis model reveals a greater variation in two coefficients, namely, the overburden bearing capacity factor ($N_q$) and the bearing capacity modifier for soil rigidity (${\zeta}_{qr}$). These factors are modified from the back analysis of drilled shaft load test results. Different effective shaft depths and interpreted capacities at various loading stages (i.e., low, middle, and high) are adopted for the back calculation. Results show that the modified bearing capacity coefficients maintain their basic relationship with soil effective friction angle ($\bar{\phi}$), in which the $N_q$ increases and ${\zeta}_{qr}$ decreases as $\bar{\phi}$ increases. The suggested effective shaft depth is limited to 15B (B = shaft diameter) for the evaluation of effective overburden pressure. Specific design recommendations for the tip bearing capacity analysis of drilled shafts in cohesionless soils are given for engineering practice.

Applicability Evaluation of IGM시s Theory Using the Results of Load Transfer Tests of Drilled Shafts (현장타설말뚝의 하중전이시험 결과를 이용한 IGM 이론의 적용성 평가)

  • 천병식;김원철;서덕동;윤우현
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.29-40
    • /
    • 2004
  • The bearing capacity of drilled shaft is affected by several factors, such as shaft length, shape, surface roughness, young's modulus of geomaterials and shaft, soil strength, confining stress and so on. However, there has been no design method of drilled shaft considering all factors mentioned above. Moreover, since geomaterials are simply classified as sand, clay and rock, there was no design criterion for IGM (Intermediate Geomaterials). Therefore, the rigorous design approach of drilled shaft was not possible by classical design method. However, since these characteristics were not considered in classical theories, bearing capacity was generally different ken practical value. In this study, the bearing capacity of drilled shaft with the IGM's theory was compared with those of classical theories. The results showed that classical method showed smaller values of bearing capacity than those of field load transfer data. Moreover, the evaluated value of bearing capacity with IGM theory corresponded fairly well with those of field data.

Changes in Ultimate Bearing Capacity according to the Position of the End of the Drilled Shaft (현장타설말뚝 선단부의 위치에 따른 극한지지력 변화)

  • Choi, Dong-Lo;Park, Kyeong-Ho;Kim, Chae-Min;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.49-59
    • /
    • 2022
  • This study was conducted to find out the rational and appropriate design of drilled shaft. In other words, in order to find out the variation of ultimate bearing capacity according to the change in the support layer of drilled shaft, back analysis was performed using the bi-directional pile load test performed on drilled shaft. Based on the back-analyzed data, numerical analysis of the pile head load was performed, and the ultimate bearing capacity in the target ground was evaluated using the Davisson method. As a result of numerical analysis of one case where the end of the pile was seated on the top of the weathered rock layer, and three cases where the end of the pile was embedded at different locations in the weathered soil, it was found that sufficient ultimate bearing capacity was secured in all cases. In other words, the case where the end of the pile is seated on the top of the weathered rock layer, not embedded the weathered rock, and the drilled shaft embedded into the weathered soil also have sufficient bearing capacity, so it can be used as a support layer for drilled shaft.

The Analysis of Shaft Deformation for Evaluating the Bearing Capacity of IGM Sosketed Drilled Shaft (IGM에 근입된 말뚝의 지지력 해석을 위한 기준침하량 결정방법 제안)

  • Chun, Byung-Sik;Kim, Won-Cheul;Seo, Deok-Dong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.17-30
    • /
    • 2004
  • In this study, a new formula of settlement at the head of IGM was suggested and the applicability of suggested formula was verified with field test results. This suggested formula was the function of the settlement at the shaft head and the elastic compression of shaft. The applicability of suggested formula was verified with the result of in-situ load test. Also, the bearing capacity of drilled shaft with the IGM's theory was compared with those of classical theories. The results showed that classical method showed smaller values of bearing capacity than those of field load test data. The results of analysis also showed that the suggested formula and IGM's theory were applicable for the estimation of bearing capacity with the increase of shaft settlement. Especially, settlement correction factor($k_m$), which reflects ground condition and load transfer characteristics, increases as the applying load and shaft deformation increase. This suggested formula was applicable for medium density or higher density of soil condition and $k_m=1$ means yielding load for firm soil condition.

  • PDF

Bearing Capacity Evaluation of Drilled Shaft for Top & Down Method (탑다운 기초 현장타설말뚝의 지지력 평가)

  • Cho, Chun-Whan;Kim, Hong-Mook;Kim, Woong-Kyu;Kwon, Se-Oh;Sung, Byung-Wan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.58-65
    • /
    • 2004
  • Recently, the top & down method with drilled shafts as a foundation of high rise building is often adopted for the purpose of construction period reduction and construction cost effectiveness. It is common to omit the loading test as a Quality assurance on account of the high capacity of drilled shafts for the top & down method. It seems that the capacity of drilled shaft in recent top & down method is beyond that of conventional loading test method.However, the quality assurance for the drilled shaft as foundation of high rise building becomes much more important since the drilled shaft should bear much higher working load. It may be a small scale test pile could be an alternative as a quality assurance for the drilled shaft with high capacities. Through a case study, this paper gives an idea for solving the limitation of the conventional loading test method for the quality assurance of drilled shaft with high capacities. In particular, this paper analyzed the scale effect for a small drilled shaft installed into bedrock, which could be used for an alternative.

  • PDF

Effect of Configuration of Shaft and Helix Plate on Bearing Capacity of Moderate-size Helical Pile : I. Test-bed Construction and Field Loading Test (중소구경 헬리컬 파일의 축과 원판의 형상이 지지력에 미치는 영향 평가 : I. 시험시공과 현장재하시험)

  • Lee, Jongwon;Lee, Dongseop;Kim, Hyung-Nam;Choi, Hangseok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.31-39
    • /
    • 2014
  • The helical pile is a manufactured steel pile consisting of one or more helix-shaped bearing plates affixed to a central shaft. This pile is installed by rotating the shaft into the ground to support structural loads. The advantages of helical piles are no need for boring or grout process, and ability to install with relatively light devices. The bearing capacity of the helical pile is exerted by integrating the bearing capacity of each helix plate attached to the steel shaft. In this paper, to estimate the bearing capacity of moderate-size helical piles, 6 types of helical piles were constructed with different shaft diameter, plate configuration and the penetration depth. A series of field loading tests was performed to evaluate the effect of helical pile configuration on the bearing capacity of helical pile, constructed in two different shaft diameters (i.e. 73 mm and 114 mm). In the same way, the diameter of bearing plate was also changed from 400mm to 250mm with one or three plates. As well, the penetration depth was varied from 3m to 6m to analyze the relation between the penetration depth and the bearing capacity. As a result, not only the increase of the shaft diameter, but also the number or diameter of helix bearing plates enhances the bearing capacity. Especially the configuration of the helix plate is more critical than the shaft diameter.

Comparison of Bearing Capacity Equations for Rock Socketed Drilled Shalt Based on the Results of Static Pile Load Test (정재하시험을 통해 산출되는 현장타설말뚝의 지지력이론식 비교연구)

  • 천병식;황성식;이승범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.333-340
    • /
    • 2003
  • In Korea, drilled shaft are generally socketed into rock. Driven pile has environmental problems such as vibration and noise. Therefore, applications of the drilled shaft are increasing in Korea. In this paper, static load test data of the rock socketed drilled shaft at Gwangandaero and Suyeong 3hogyo are analyzed. The bearing capacities from field test data and theoretical formula are compared and analyzed. From this study, design approaches for drilled shafts in Korea are examined and several suggestions are proposed.

  • PDF

A Case Study on the Measurement and Estimation of Bearing Capacity of Large Diameter Bored Pile (대구경 현장타설말뚝의 지지력 측정 사례연구)

  • 이원제;정훈준;이우진;장기수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.285-292
    • /
    • 2000
  • Though there has been increasing use of large diameter drilled shaft as a foundation structure of bridges, current practice for quality control is to confirm the minimum required load carrying capacity during construction stage. For economic and appropriate design of drilled shaft, it is necessary to evaluate the load transfer mechanism by pile load tests during initial stage of construction and to use the test results as a feedback to a revision of initial design. In this paper, results of load tests peformed at several domestic sites are presented to investigate the load transfer characteristics of large diameter drilled shaft. It was found that most of the load on piles is sustained by shaft friction and that only small portion of the load reaches the bottom of the drilled shaft. Some test results of drilled shaft by Pile Driving Analyzer performed at same sites are also presented to compare the load transfer characteristics interpreted from static pile load tests.

  • PDF

The Bearing Capacity Comparison of Drilled Shaft by the Static Load Test and the Suggested Bearing Capacity Formulas (현장타설말뚝의 정재하시험에 의한 지지력과 이론식에 의한 지지력과의 비교)

  • 천병식;김원철;최용규;서덕동
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.237-246
    • /
    • 2003
  • The driven pile has environmental problems such as vibration and noise. Especially, if the site consists of gravel, cobble and weather rock, the driven pile can not be applied. Therefore, the application of the drilled shafts is increasing in Korea. However, the bearing capacity values by the suggested theoretical formulas are generally considered too conservative. In this paper, static load tests for the rock socketed drilled shaft at Gwangandaero and Suyeong3hogyo are performed and in order to estimate the side friction of the shaft, strain gauges are applied. The bearing capacities from the field test data and the bearing capacity values by the theoretical formula are compared. Even the static load tests didn't reach to the ultimate bearing capacity condition, and all the measured bearing capacity values were higher than those by the theoretical formulas. The field data also showed that the major bearing capacities were not due to end bearings but side friction resistances. Based on the above results, several suggestions are proposed for the drilled shaft design.