• Title/Summary/Keyword: Shaft Length

Search Result 185, Processing Time 0.032 seconds

Study on Rock classification of Rock Socketed Drilled Shaft (현장타설말뚝의 암반 근입부 암판정 사례연구)

  • Park, Woan-Suh;Yoo, Jai-Hyun;Lee, Woo-Cheol;Joo, Yong-Sun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.658-663
    • /
    • 2010
  • Recently the most of deep foundation were socketed into weathered rock or soft rock to carry large foundation loads. The end bearing behavior of piles socketed in rock is generally dependent on the rock mass conditions with discontinuities and rock strength. Therefore, it is very important that the estimating rock classification with relation of TCR, RQD and unpredicted rock condition. In this study, the construction failure example of drilled shaft due to mistaking to estimate the rock classification on penetration were analyzed in site, so we hope to discuss problems of determining the rock socketed length of drilled shaft on construction.

  • PDF

Inclination angle influence on noise of cavitating marine propeller

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.49-65
    • /
    • 2020
  • In this study, the effects of inclined shaft angle on the hydro-acoustic performance of cavitating marine propellers are investigated by a numerical method developed before and Brown's empirical formula. The cavitating blades are represented by source and vortex elements. The cavity characteristics of the blades such as cavitation form, cavity volume, cavity length etc., are computed at a given cavitation number and at a set advance coefficient. A lifting surface method is applied for these calculations. The numerical lifting surface method is validated with experimental results of DTMB 4119 model benchmark propeller. After calculation of hydrodynamic characteristics of the cavitating propeller, noise spectrum and overall sound pressure level (OASPL) are computed by Brown's equation. This empirical equation is also validated with another numerical results found in the literature. The effects of inclined shaft angle on thrust coefficient, torque coefficient, efficiency and OASPL values are examined by a parametric study. By modifying the inclination angles of propeller, the thrust, torque, efficiency and OASPL are computed and compared with each other. The influence of the inclined shaft angle on cavity patterns on the blades are also discussed.

WC Micro-shaft Fabrication Using Electrochemical Etching (전해 가공을 이용한 WC 미세축 제작)

  • 최세환;류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.172-178
    • /
    • 2004
  • Tungsten carbide microshaft can be used as various micro-tools for MEMS because it has high hardness and high rigidity. In this study, experiments are performed to produce tungsten carbide micro-shaft using electrochemical etching. H$_2$SO$_4$ solution is used as electrolyte because it can dissolve tungsten and cobalt simultaneously. Optimal electrolyte concentration and machining voltage satisfying uniform shape, good surface quality, and high MRR of workpiece are experimentally found. By controlling the various machining parameters, a straight micro-shaft with 5 ${\mu}{\textrm}{m}$ diameter, 3 mm length, and 0.2$^{\circ}$taper angle was obtained.

A Study on Behavior Analysis of Large-diameter Drilled Shaft by Design Methods in Deep Water Depth Composite Foundation (대수심 대형 복합기초에서 설계기법에 따른 대구경 현장타설말뚝의 거동 분석 연구)

  • Han, Yushik;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.5-16
    • /
    • 2015
  • In the long span bridge construction, construction cost portion of large scale marine foundation is about 40% (KICTEP, 2007). In this study, designs for deep water depth large composite foundation of a super long span cable-stayed girder bridge of prototype were performed by three design methods (ASD, LRFD, Eurocode) and the behaviors of a large diameter drilled shaft were analyzed and the 3D numerical analysis was performed. As a result, the soft rock socket lengths in allowable stress design estimation method were the longest. The soft rock socket lengths estimated by the design approach 2 among Eurocode and the LRFD were similar. The longer the socket length socketed in the soft rock was, the smaller the axial force acting on a large-diameter drilled shaft head was and the smaller the settlement of drilled shaft was.

Surface Inspection Algorighm using Oriented Bounding Box (회전 윤곽 상자를 이용한 표면 검사 알고리즘)

  • Hwang, Myun Joong;Chung, Seong Youb
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.23-26
    • /
    • 2016
  • DC motor shafts have several defects such as double cut, deep scratch on surface, and defects in diameter and length. The deep scratches are due to collision among the other shafts. So the scratches are long and thin but their orientations are random. If the smallest enclosing box, i.e. oriented bounding box for a detective point group is found, then the size of the corresponding defect can be modeled as its diagonal length. This paper proposes an suface inspection algorithm for the DC motor shaft using the oriented bounding box. To evaluate the proposed algorithm, a test bed is made with a line scan CCD camera (4096 pixels/line) and two rollers mechanism to rotate the shaft. The experimental result on a pre-processed image with contrast streching algorithm, shows that the proposed algorithm sucessfully finds 150 surface defects and its computation time (0.291 msec) is enough fast for the requirement (4 seconds).

Effect of Pitch Angle and Blade Length on an Axial Flow Fan Performance (피치각과 날개 길이에 따른 축류팬의 성능)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • In this study, the performance of an impeller according to blade length and pitch angle was studied experimentally by building a variable pitch impeller while changing blade length to review the effect of blade length and pitch angle on a fan's performance. The pitch angle was changed in six steps from $20^{\circ}{\sim}45^{\circ}$ at intervals of $5^{\circ}$ while the blade lengths were changed to 90 mm, 100 mm, 110 mm and 120 mm with an identical airfoil shape while carrying out the experiment. The results are summarized as follows: The air flow per static pressure of axial fans increased linearly with increase of pitch angle, but the high static pressure showed a decrease at a pitch angle of $35^{\circ}$. The shaft power increased proportionally to the pitch angle at all blade lengths; the larger the pitch angle, the larger the measured increase of shaft power. This is because the drag at the fan's front increases with the pitch angle. In the axial fans considered in this research, the flow and increase of static pressure amount increased up to a pitch angle of $30^{\circ}$ but decreased rapidly above $35^{\circ}$.

Total Urethra and Penile Shaft Reconstruction with Combined Pedicled Anterolateral Thigh Flap and Radial Forearm Free Flap after Total Penectomy

  • di Summa, Pietro Giovanni;Sapino, Gianluca;Bauquis, Olivier
    • Archives of Plastic Surgery
    • /
    • v.49 no.3
    • /
    • pp.448-452
    • /
    • 2022
  • Total reconstruction of the penis (TPR) represents a challenge for urologists and plastic surgeons, especially when urethral length is severely reduced. We here describe, for the first time in an oncologic scenario, a double flap phalloplasty using a pedicled anterolateral thigh (ALT) flap for penile reconstruction and a radial forearm free flap (RFFF) for complete neourethra and glans reconstruction following penile amputation. A 48-year-old patient came to our department following a total penectomy with inferior urethral derivation. The indication for a double flap phalloplasty was posed as only way to fully reconstruct the urethra on its length avoiding possible complications of single flap reconstruction using tube-into-tube technique. Both flaps healed uneventfully with no neourethral strictures or fistulas described. At 18 months follow-up, the patient was extremely satisfied with the aesthetic result and was able to void in standing position. We think that a double free tissue transfer for TPR should be considered, particularly when a urethral length > 14 cm needs to be reconstructed. While the pedicled ALT can be used to reconstruct a proper penile shaft with an easily concealed scar, the RFFF can provide adequate neourethra length with satisfactory sensory recovery at the neoglans.

A Study on Mechanical Properties According to the Radius Change Position of Outer Circumference in A2024-T4 Friction Welding (A2024-T4 마찰용접(摩擦熔接)시 반경 변화에 따른 기계적(機械的) 성질(性質) 연구(硏究))

  • Park, Keun-Hyung;Min, Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.109-116
    • /
    • 2007
  • The present study examined mechanical properties according to the change of outer circumference in the friction welding of A2024-T4 stock, which is used much as aircraft structure, truck wheel, stainless materials and A2024-T4 stock with 10 hollow at the center. Welding conditions were fixed at RPM 2,000rpm, friction pressure of 50MPa, friction time of 1.5sec, upset pressure of 120MPa and upset time of 2.0 seconds. From the result of this study were drawn conclusions as follows : According to the result of a tensile strength test, the solid shaft showed linear increase of tensile strength with the change of outer circumference, the hollow shaft showed maximum tensile stength when the length (L) was 2mm and decrease of tensile strength with the change of outer circumference, hardness appeared to increase and then decrease for welding interface, and it showed maximum hardness 155Hv at L=5mm of the solid shaft. Bending strength increased linearly far change of the distance (L) of outer circumference in the solid shaft and then decreased linearly in the hollow shaft. the result of examining tissue, the tissue grew finer around the welding interface and divided the basic material and the welding surface.

Dynamic Behavior of Rotating Shaft System Corresponding to Operating Modes (운전모드에 따른 회전축계의 동적거동)

  • Kim, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2744-2751
    • /
    • 1996
  • In case of limited power supply, a rotating shaft system may not reach its operating speed that is greater than its critical speed, but the speed oscillates with small ampllitude near critical speed. As a result, it is considered that the operating mode plays an important role in the smooth start of machines. In order to investigate the dynamic behaviors of the rotating shaft system at the beginning stage, one has derived the equations of motion whose degrees of freedom is three, two translations and one rotation. The simultaneous differential equations are numerically solved by using runge-Kutta method, and thus the small time step length could be required corresponding to the stability of solution. Three types of operating modes dependent upon the driving torque rate have been numerically investigated according to the maximum displacement of shaft center. The first type of relation is linear, the second type is composed of two linear curves recommended by machine manufacturer, and the last one is the proposed torque curve reflecting the frequency response curve of one degree of freedom system. For the second type of modes, it is found that the optimal range of intermediate speed to the critical speed lies between 0.8 and 0.9. In addition to that, the maximum displacement can be reduced more if the third type of mode is utilized.

Experimental Interpretation of Heat Transmits Pattern on Warm Needling (온침의 열전달 특성에 대한 실험적 해석)

  • Yang, Seung-Bum;Park, Soon-Jae;Lee, Jae-Gun;Jung, Ji-Chul;Kim, Jae-Hyo
    • Korean Journal of Acupuncture
    • /
    • v.34 no.3
    • /
    • pp.109-115
    • /
    • 2017
  • Objectives : Many researches have studied warm needling technique to standardize its treatment by temperature measurement and material differences in the effectiveness. The purpose of this study is to compare the temperature changes of the acupuncture needle shaft during the combustion process of the moxa stick to determine the heat transfer pattern of the warn needling. Methods : A moxa stick($7{\times}8mm$) was connected to one side of the needle shaft using a stainless steel needle(ø 0.3 mm, ø 0.5 mm, ø 0.8 mm, shaft length 40 mm) with the needle handle removed. During the warm needling, temperature changes of the needle shaft were observed with an infrared camera(Flir E30) and an infrared thermometer(TESTO 845). Results : In the normal condition, heat transmit of needle shaft increased at spots 10 mm and 25 mm below the moxa stick. The amount of heat transmit increased with the diameter of needle shaft. However, when the heat shield was installed to exclude radiant heat from the moxa stick, heat transfer was less at 10 mm below the moxa stick and no temperature change was observed at 25 mm below the moxa stick. Heat transfer by warm needling does not reach the end of needle shaft even in ø 0.8 mm needle. Conclusions : It is suggested that the radiant heat of moxa stick results in the heat transmit of acupuncture needle shaft. Thus, radiant heat transmit must be considered as one of the heat transfer characteristics of the warm needling.