• Title/Summary/Keyword: Shadow classification

Search Result 48, Processing Time 0.024 seconds

A Study on the Asphalt Road Boundary Extraction Using Shadow Effect Removal (그림자영향 소거를 통한 아스팔트 도로 경계추출에 관한 연구)

  • Yun Kong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2006
  • High-resolution aerial color image offers great possibilities for geometric and semantic information for spatial data generation. However, shadow casts by buildings and trees in high-density urban areas obscure much of the information in the image giving rise to potentially inaccurate classification and inexact feature extraction. Though many researches have been implemented for solving shadow casts, few studies have been carried out about the extraction of features hindered by shadows from aerial color images in urban areas. This paper presents a asphalt road boundary extraction technique that combines information from aerial color image and LIDAR (LIght Detection And Ranging) data. The following steps have been performed to remove shadow effects and to extract road boundary from the image. First, the shadow regions of the aerial color image are precisely located using LEAR DSM (Digital Surface Model) and solar positions. Second, shadow regions assumed as road are corrected by shadow path reconstruction algorithms. After that, asphalt road boundary extraction is implemented by segmentation and edge detection. Finally, asphalt road boundary lines are extracted as vector data by vectorization technique. The experimental results showed that this approach was effective and great potential advantages.

CREATION OF DIGITAL CITY MODEL FROM A SINGLE KOMPSAT-2 IMAGE

  • Kim, Hye-Jin;Choi, Jae-Wan;Han, You-Kyung;Kim, Yong-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.365-367
    • /
    • 2008
  • A digital city model represents a 3D environment of a city with various city object information such as 3D building model, road, and land cover. Usually, at least two satellite images with some image overlap are necessary and a complex satellite-related computation needs to be carried out to create a city model. This is an expensive technique, because it requires many resources and excessive computational cost. The authors propose a methodology to create a digital city model including 3D building model and land cover information from a single high resolution satellite image. The approach consists of image pan-sharpening, shadow recovery, building occlusion restoration, building model extraction, and land cover classification. We create a digital city model using a single KOMPSAT-2 image and review the result.

  • PDF

An Effective Shadow Elimination Method Using Adaptive Parameters Update (적응적 매개변수 갱신을 통한 효과적인 그림자 제거 기법)

  • Kim, Byeoung-Su;Lee, Gwang-Gook;Yoon, Ja-Young;Kim, Jae-Jun;Kim, Whoi-Yul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.11-19
    • /
    • 2008
  • Background subtraction, which separates moving objects in video sequences, is an essential technology for object recognition and tracking. However, background subtraction methods are often confused by shadow regions and this misclassification of shadow regions disturbs further processes to perceive the shapes or exact positions of moving objects. This paper proposes a method for shadow elimination which is based on shadow modeling by color information and Bayesian classification framework. Also, because of dynamic update of modeling parametres, the proposed method is able to correspond adaptively to illumination changes. Experimental results proved that the proposed method can eliminate shadow regions effectively even for circumstances with varying lighting condition.

Estimation of the Flood Area Using Multi-temporal RADARSAT SAR Imagery

  • Sohn, Hong-Gyoo;Song, Yeong-Sun;Yoo, Hwan-Hee;Jung, Won-Jo
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.37-46
    • /
    • 2002
  • Accurate classification of water area is an preliminary step to accurately analyze the flooded area and damages caused by flood. This step is especially useful for monitoring the region where annually repeating flood is a problem. The accurate estimation of flooded area can ultimately be utilized as a primary source of information for the policy decision. Although SAR (Synthetic Aperture Radar) imagery with its own energy source is sensitive to the water area, its shadow effect similar to the reflectance signature of the water area should be carefully checked before accurate classification. Especially when we want to identify small flood area with mountainous environment, the step for removing shadow effect turns out to be essential in order to accurately classify the water area from the SAR imagery. In this paper, the flood area was classified and monitored using multi-temporal RADARSAT SAR images of Ok-Chun and Bo-Eun located in Chung-Book Province taken in 12th (during the flood) and 19th (after the flood) of August, 1998. We applied several steps of geometric and radiometric calculations to the SAR imagery. First we reduced the speckle noise of two SAR images and then calculated the radar backscattering coefficient $(\sigma^0)$. After that we performed the ortho-rectification via satellite orbit modeling developed in this study using the ephemeris information of the satellite images and ground control points. We also corrected radiometric distortion caused by the terrain relief. Finally, the water area was identified from two images and the flood area is calculated accordingly. The identified flood area is analyzed by overlapping with the existing land use map.

  • PDF

Spectral Classification of Man-made Materials in Urban Area Using Hyperspectral Data

  • Kim S. H.;Kook M. J.;Lee K. S.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.10-13
    • /
    • 2004
  • Hyperspectral data has a great advantage to classify various surface materials that are spectrally similar. In this study, we attempted to classify man-made materials in urban area using Hyperion data. Hyperion imagery of Seoul was initially processed to minimize radiometric distortions caused by sensor and atmosphere. Using color aerial photographs. we defined seven man-made surfaces (concrete, asphalt road. railroad, buildings, roof, soil, shadow) for the classification in Seoul. The hyperspectral data showed the potential to identify those manmade materials that were difficult to be classified by multispectral data. However. the classification of road and buildings was not quite satisfactory due to the relatively low spatial resolution of Hyperion image. Further, the low radiometric quality of Hyperion sensor was another limitation for the application in urban area.

  • PDF

A Study on the Classification Scheme of the Internet Search Engine (인터넷 탐색엔진에 관한 연구)

  • 김영보
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.8 no.1
    • /
    • pp.197-227
    • /
    • 1997
  • The main purpose of this study is ① to settle and to analyze the classification of the Internet Search Engine comparitively, and ② to build the compatible model of Internet Search Engine classification in order to seek information on the Internet resources. specially in the branch of the Computers and Internet areas. For this study, four Internet Search Engine (Excite, 1-Detect, Simmany, Yahoo Korea!), Inspec Classification and two distionaries were used. The major findings and result of analysis are summarized as follows : 1. The basis of the classification is the scope of topics, the system logic, the clearness, the efficiency. 2. The scope of topics is analyzed comparitively by the number of items from each Search Engine. In the result, Excite is the most superior of the four 3. The system logic is analyzed comparitively by the casuality balance and consistency of the items from each Search Engine. In the result, Excite is the most superior of the four 4. The clearness is analyzed comparitively by the clearness and accuracy of items, the recognition of the searchers. In the result, Excite is the most superior of the four. 5 The efficiency is analyzed comparitively by the exactness of indexing and decreasing the effort of the searchers. In the result, Yahoo Korea! is the most superior of the four. 6 The compatible model of Internet Search Engine classification is estavlished to uplift the scope of topics, the system logic, the clearness, and the efficiency. The model divides the area mainly based upon the topics and resources using‘bookmark’and‘shadow’concept.

  • PDF

Comparison of various image fusion methods for impervious surface classification from VNREDSat-1

  • Luu, Hung V.;Pham, Manh V.;Man, Chuc D.;Bui, Hung Q.;Nguyen, Thanh T.N.
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2016
  • Impervious surfaces are important indicators for urban development monitoring. Accurate mapping of urban impervious surfaces with observational satellites, such as VNREDSat-1, remains challenging due to the spectral diversity not captured by an individual PAN image. In this article, five multi-resolution image fusion techniques were compared for the task of classifting urban impervious surfaces. The result shows that for VNREDSat-1 dataset, UNB and Wavelet tranformation methods are the best techniques in reserving spatial and spectral information of original MS image, respectively. However, the UNB technique gives the best results when it comes to impervious surface classification, especially in the case of shadow areas included in non-impervious surface group.

Real-Time PTZ Camera with Detection and Classification Functionalities (검출과 분류기능이 탑재된 실시간 지능형 PTZ카메라)

  • Park, Jong-Hwa;Ahn, Tae-Ki;Jeon, Ji-Hye;Jo, Byung-Mok;Park, Goo-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2C
    • /
    • pp.78-85
    • /
    • 2011
  • In this paper we proposed an intelligent PTZ camera system which detects, classifies and tracks moving objects. If a moving object is detected, features are extracted for classification and then realtime tracking follows. We used GMM for detection followed by shadow removal. Legendre moment is used for classification. Without auto focusing, we can control the PTZ camera movement by using center points of the image and object's direction, distance and velocity. To implement the realtime system, we used TI DM6446 Davinci processor. Throughout the experiment, we obtained system's high performance in classification and tracking both at vehicle's normal and high speed motion.

Area Classification, Identification and Tracking for Multiple Moving Objects with the Similar Colors (유사한 색상을 지닌 다수의 이동 물체 영역 분류 및 식별과 추적)

  • Lee, Jung Sik;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.477-486
    • /
    • 2016
  • This paper presents the area classification, identification, and tracking for multiple moving objects with the similar colors. To do this, first, we use the GMM(Gaussian Mixture Model)-based background modeling method to detect the moving objects. Second, we propose the use of the binary and morphology of image in order to eliminate the shadow and noise in case of detection of the moving object. Third, we recognize ROI(region of interest) of the moving object through labeling method. And, we propose the area classification method to remove the background from the detected moving objects and the novel method for identifying the classified moving area. Also, we propose the method for tracking the identified moving object using Kalman filter. To the end, we propose the effective tracking method when detecting the multiple objects with the similar colors. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

Land Cover Classification Using Lidar and Optical Image (라이다와 광학영상을 이용한 토지피복분류)

  • Cho Woo-Sug;Chang Hwi-Jung;Kim Yu-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.139-145
    • /
    • 2006
  • The advantage of the lidar data is in fast acquisition and process time as well as in high accuracy and high point density. However lidar data itself is difficult to classify the earth surface because lidar data is in the form of irregularly distributed point clouds. In this study, we investigated land cover classification using both lidar data and optical image through a supervised classification method. Firstly, we generated 1m grid DSM and DEM image and then nDSM was produced by using DSM and DEM. In addition, we had made intensity image using the intensity value of lidar data. As for optical images, the red, blue, green band of CCD image are used. Moreover, a NDVI image using a red band of the CCD image and infrared band of IKONOS image is generated. The experimental results showed that land cover classification with lidar data and optical image together could reach to the accuracy of 74.0%. To improve classification accuracy, we further performed re-classification of shadow area and water body as well as forest and building area. The final classification accuracy was 81.8%.