When dealing with outdoor images in a variety of computer vision applications, the presence of shadow degrades performance. In order to understand the information occluded by shadow, it is essential to remove the shadow. To solve this problem, in many studies, involves a two-step process of shadow detection and removal. However, the field of shadow detection based on CNN has greatly improved, but the field of shadow removal has been difficult because it needs to be restored after removing the shadow. In this paper, it is assumed that shadow is detected, and shadow-less image is generated by using original image and shadow mask. In previous methods, based on CGAN, the image created by the generator was learned from only the aspect of the image patch in the adversarial learning through the discriminator. In the contrast, we propose a novel method using a discriminator that judges both the whole image and the local patch at the same time. We not only use the residual generator to produce high quality images, but we also use joint loss, which combines reconstruction loss and GAN loss for training stability. To evaluate our approach, we used an ISTD datasets consisting of a single image. The images generated by our approach show sharp and restored detailed information compared to previous methods.
In a dynamic IT environment, employees often utilize external IT resources to work more efficiently and flexibly. However, the use of external IT resources beyond its control may cause difficulties in the company. This is known as "Shadow IT." In spite of efficiency gains or cost savings, Shadow IT presents problems for companies such as the outflow of enterprise data. To address these problems, appropriate measures are required to maintain a balance between flexibility and control. Therefore, in this study, we developed a new information security management system called AIIMS (Advanced IT service & Information security Management System) and the Shadow IT Evaluation Model. The proposed model reflects a Shadow IT's attributes such as innovativeness, effectiveness, and ripple effect. AIIMS consists of five fields: current analysis; Shadow IT management plans; management process; education and training; and internal audit. There are additional management items and sub-items within these five fields. Using AIIMS, we expect to not only mitigate the potential risks of Shadow IT but also create successful business outcomes. Now is the time to draw to the Light in the Shadow IT.
Purpose Today, through digital services, many people enjoy a conveient and comfortable life. Nevertheless, it is easy to find people in our daily lives who are buried in work without any payment that we did not do before digital services. Such un-payed works under digital environment are called digital shadow works. The purpose of this study is to classification and dynamics of digital shadow works and to suggest research direction. Design/methodology/approach Based on two dimension, voluntary participation ('should' type and 'want' type) and work orientation (management-operation), digital shadow works were classified into four categories - chore, makeup, routine, and quest. Findings In digital shadow work there are four types of dynamics - routine and quest, makeup and chore, makeup and quest, and quest and actions in offline. According to the classification and analysis of dynamics, three research directions in digital shadow work are suggested and discussed- digital shadow works operation mechanism considering dynamics, expansion of existing user theories based on survey method by digital shadow works and social influences by digital shadow works.
본 논문에서는 그림자 정보를 사용하여 위성 영상에서 건물을 검출하는 기법을 제안한다. 비교적 일정한 밝기값 분포를 가지는 건물을 검출하기위해 영상을 건물, 그림자 그리고 배경의 세가지 영역으로 분류한다. 건물 영역 및 그림자 영역에 대해 잡음을 제거하고 그림자 영역에 인접한 건물을 건물과 그림자 크기에 대한 제약 조건을 적용하여 검출한다. 본 논문에 사용된 영상은 KOMPSAT 위성영상과 SPOT 위성영상을 사용하였으며 위성영상내의 건물을 효과적으로 검출할 수 있었다.
Purpose The purpose of this study is to clarify the conceptualizations of mandatory and reward that have come into focus in the definition of digital shadow work. And explore how users in a shared services environment view cost and coercion from the perspective of digital shadow work. Design/methodology/approach We conducted one-on-one interviews with 4 participants, with each interview being an average of 25 minutes. Based on literature review, stakeholder observation, and interviews on digital shadow work so far, very objective results can be derived through triangulation based on the basis of multiple sources. Findings According to the results of the preliminary study, there are some rewards for each type of digital shadow work, but time saving and service convenience are considered more than financial rewards. Unfair demands in determining whether to implement them in consideration of the difficulty and expected benefits of the demanding digital work can cause dissatisfaction with the service. Academic implications and future research directions are also discussed.
Due to complexity of diverse features in urban area, accurate feature extraction is laborious task in aerial and satellite imagery. Especially occlusion by buildings, and image distortion of shadow effects make processing more difficult work. In this study, algorithm was presented to correct of shadow effects in aerial color images. This algorithm enables user to accurately interpretate urban information by correction of shadow effects in aerial color images
Detecting shadows in images and restoring or removing them was a very challenging task in computer vision. Traditional researches used color information, edges, and thresholds to detect shadows, but there were errors such as not considering the penumbra area of shadow or even detecting a black area that is not a shadow. Deep learning has been successful in various fields of computer vision, and research on applying deep learning has started in the field of shadow detection and removal. However, it was very difficult and time-consuming to collect data for network learning, and there were many limited conditions for shooting. In particular, it was more difficult to obtain shadow data from buildings and satellite images, which hindered the progress of the research. In this paper, we propose a method for generating shadow data from buildings and satellites using Unity3D. In the virtual Unity space, 3D objects existing in the real world were placed, and shadows were generated using lights effects to shoot. Through this, it is possible to get all three types of images (shadow-free, shadow image, shadow mask) necessary for shadow detection and removal when training deep learning networks. The method proposed in this paper contributes to helping the progress of the research by providing big data in the field of building or satellite shadow detection and removal research, which is difficult for learning deep learning networks due to the absence of data. And this can be a suboptimal method. We believe that we have contributed in that we can apply virtual data to test deep learning networks before applying real data.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권4호
/
pp.2042-2059
/
2019
Digital shadow puppet has traditionally relied on expensive motion capture equipments and complex design. In this paper, a low-cost driven technique is presented, that captures human pose estimation data with simple camera from real scenarios, and use them to drive virtual Chinese shadow play in a 2.5D scene. We propose a special method for extracting human pose data for driving virtual Chinese shadow play, which is called 2.5D human pose estimation. Firstly, we use the 3D human pose estimation method to obtain the initial data. In the process of the following transformation, we treat the depth feature as an implicit feature, and map body joints to the range of constraints. We call the obtain pose data as 2.5D pose data. However, the 2.5D pose data can not better control the shadow puppet directly, due to the difference in motion pattern and composition structure between real pose and shadow puppet. To this end, the 2.5D pose data transformation is carried out in the implicit pose mapping space based on self-network and the final 2.5D pose expression data is produced for animating shadow puppets. Experimental results have demonstrated the effectiveness of our new method.
대한원격탐사학회 2008년도 International Symposium on Remote Sensing
/
pp.371-374
/
2008
In very high-spatial resolution remote sensing imagery, it is difficult to extract the feature information of various objects because of occlusion and shadows. Moreover, various and feeble information within shadows can be of use in GIS-based applications and remote sensing analysis. In this paper, we developed a radiometric restoration method for shadow areas using KOMPSAT-2 satellite image. After detecting the shadow, non-shadow pixels nearby are extracted using a morphological filter. An iterative linear regression method is applied to calculate the relationship between shadow and non-shadow pixels. The shadows are restored by the parameters of the linear regression algorithm. Tests show that recovery of shadowed areas by our method leads to improved image quality.
모바일 컴퓨팅 환경은 크게 모바일 노드, 무선망, 그리고 이동성이라는 기술로 이루어진다. 이음새없는 (seamless) 이동성을 제공하기 위한 기존의 Shadow Registration 방법은 핸드오프가 발생하기 이전에 이웃한 모든 노드들(AAAF/sbu n/)에게 모바일 노드의 관련 정보를 사전등록(Shadow Registration)하는 방법을 제안하여 핸드오프 이후에 발생하는 끊김이나 지연을 방지하였다. 그러나 이러한 Shadow Registration의 경우 백본 네트워크에 불필요한 트래픽 발생 및 데이터 관리라는 문제를 야기시킨다. 본 논문은 이러한 문제점들을 개선하고자 새롭게 사전등록 트리거 영역(STR: Shadow Trigger Region)을 설정하고, STR 내에 모바일 노드(MN)가 위치할 경우 MN의 이동 방향을 이용하여 최소한의 사전등록영역(SRR: Shadow Registration Region)을 찾아내는 방법을 제안한다. 결과적으로 제안된 SRR 은 최대 2 개의 이웃노드(AAAF$_2$)에게만 사전등록을 요청하면 되므로, 기존의 방법에 비해 최대 ∑(n2)번의 사전등록 횟수를 줄이면서 끊김과 지연도 방지할 수 있는 효과적인 방법이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.