• Title/Summary/Keyword: Shading efficiency

Search Result 117, Processing Time 0.029 seconds

Implementation and the Energy Efficiency of the Kinetic Shading System (가동형 차양 시스템의 구성과 에너지 효율)

  • Han, Seung-Hoon
    • KIEAE Journal
    • /
    • v.14 no.5
    • /
    • pp.67-73
    • /
    • 2014
  • This study aims at examining kinetic efficient shading systems and their implementation methods. These days, the importance of the shading devices are getting more significant due to the energy problem. Cordially, suitable shade designs are required as an important element for the exterior envelope of the building. This study employs the optimal shading design as an efficient shading method with the kinetic system that can be converted actively by the altitude of the sun. The proposed kinetic shading system works not only as a lightshelf in case the altitude of the sun is high but also as a vertical louver when the sun is getting lower in order to block the direct sunlight. This study has analyzed the thermal performance and shading coefficient of the kinetic shading system in comparison to existing fixed shading devices using the Ecotect. The results, in sum, conclude that the suggested kinetic shading system could decrease direct sunlights 26.2% more than the existing shading methods.

Effect of Different Shading Levels on the Growth and Leaf Color Changes of Variegated Physocarpus opulifolius 'Diabolo' and Ophiopogon planiscapus 'Nigrescens' (광도차이에 따른 자주중산국수나무(Physocarpus opulifolius 'Diabolo') 와 자주맥문동(Ophiopogon planiscapus 'Nigrescens')의 엽색과 생육 변화)

  • Kim, Hyun Jin;Joo, Na Ri
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.6
    • /
    • pp.112-119
    • /
    • 2008
  • In order to elucidate growth characteristics, physiological responses and leaf color changes of Physocarpus opulifolius 'Diabolo' and Ophiopogon planiscapus 'Nigrescens'. These experiments were investigated under various shading levels. Growth of P.opulifolius 'Diabolo' was better at 30% shading level but physiological activities were double at strong light condition. Dark purple color was observed at 85% shading level and color was dim down when shading level decreased. Color was deep purple(RHS 202A) at 85% shading and green(RHS 139A) at 0%, These results imply that ornamental value was increased when shading level increased for P. opulifolius 'Diabolo'. Growth and highest physiological activity of O. planiscapus 'Nigrescens' were observed at 0% shading level and dark red color(RHS 202A) was also observed at 0% shading level. These results imply that ornamental value was increased when shading level decreased for O. planiscapus 'Nigrescens'.

State of the Art Review of Shading Effects on PV Module Efficiencies and Their Detection Algorithm Focusing on Maximum Power Point

  • Lee, Duk Hwan;Lee, Kwang Ho
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.21-28
    • /
    • 2014
  • This paper provides the up to date review of the shading effects on PV module performance and the associated detection algorithm related to the maximum power point tracking. It includes the brief explanations of the MMP variations due to the shading occurrence on the PV modules. Review of experimental and simulation studies highlighting the significant impacts of shading on PV efficiencies were presented. The literature indicates that even the partial shading of a single cell can greatly drop the entire module voltage and power efficiency. The MMP tracking approaches were also reviewed in this study. Both conventional and advanced soft computing methods such as ANN, FLC and EA were described for the proper tracking of MMP under shaded conditions. This paper would be the basic source and the comprehensive information associated with the shading effects and relevant MPP tracking technique.

A Study on the Optimum Design of a Facade with Shading-type BIPV in Office Building (차양형 BIPV가 적용된 사무소 건물의 외피 최적 설계에 관한 연구)

  • Park, Se-Hyeon;Kang, Jun-Gu;Bang, Ah-Young;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • Zero energy building is a self sufficient building that minimizes energy consumption through passive elements such as insulation, high performance window system and installing of high efficiency HVAC system and uses renewable energy sources. The Korea Government has been strengthening the building energy efficiency standard and code for zero energy building. The building energy performance is determined by the performance of building envelope. Therefore it is important to optimize facade design such as insulation, window properties and shading, that affect the heating and cooling loads. In particular, shading devices are necessary to reduce the cooling load in summer season. Meanwhile, BIPV shading system functions as a renewable energy technology applied in solar control facade system to reduce cooling load and produce electricity simultaneously. Therefore, when installing the BIPV shading system, the length of shadings and angle that affect the electricity production must be considered. This study focused on the facade design applied with BIPV shading system for maximizing energy saving of the selected standard building. The impact of changing insulation on roof and walls, window properties and length of BIPV shading device on energy performance of the building were investigated. In conclusion, energy consumption and electricity production were analyzed based on building energy simulations using energyplus 8.1 building simulation program and jEPlus+EA optimization tool.

Fast Partial Shading Analysis of Large-scale Photovoltaic Arrays via Tearing Method

  • Zhang, Mao;Zhong, Sunan;Zhang, Weiping
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1489-1500
    • /
    • 2018
  • Partial shading analysis of large-scale photovoltaic (PV) arrays has recently become a theoretically and numerically challenging issue, and it is necessary for PV system designers. The main contributions of this study are the following: 1) A PSIM-based macro-model was employed because it is remarkably fast, has high precision, and has no convergence issues. 2) Three types of equivalent macro-models were developed for the transformation of a small PV sub-array with uniform irradiance to a new macro-model. 3) On the basis of the proposed new macro-model, a tearing method was established, which can divide a large-scale PV array into several small sub-arrays to significantly improve the efficiency improvement of a simulation. 4) Three platforms, namely, PSIM, PSpice, and MATLAB, were applied to evaluate the proposed tearing method. The proposed models and methods were validated, and the value of this research was highlighted using an actual large-scale PV array with 2420 PV modules. Numerical simulation demonstrated that the tearing method can remarkably improve the simulation efficiency by approximately thousands of times, and the method obtained a precision of nearly 6.5%. It can provide a useful tool to design the optimal configuration of a PV array with a given shading pattern as much as possible.

Changes of Characteristics Related to Photosynthesis in Synurus deltoides under Different Shading Treatments (차광처리에 따른 수리취의 광합성 관련 특성 변화)

  • Lee, Kyeong-Cheol;Noh, Hee-Sun;Kim, Jong-Whan;Ahn, Soo-Yong;Han, Sang-Sup
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.5
    • /
    • pp.320-330
    • /
    • 2012
  • This study was conducted to investigate the changes of chlorophyll contents, chlorophyll fluorescence, photosynthetic parameters, and leaf growth of Synurus deltoides under different shading treatments. S. deltoides was grown under non-treated (full sunlight) and three different shading conditions (Shaded 88~93%, 65~75%, and 45%~55%). Light compensation point ($L_{comp}$), dark respiration ($D_{resp}$), maximum photosynthesis rate ($Pn_{max}$), photo respiration rate ($P_{resp}$), carboxylation efficiency ($\Phi_{carb}$), and photochemical efficiency were decreased with increasing shading level; However, $CO_2$ compensation point ($CO_{2\;comp}$), total chlorophyll content, and specific leaf area (SLA) were shown the opposite trend. S. deltoides under 88~93% treatment showed the lowest photosynthetic activity such as maximum photosynthetic rate ($Pn_{max}$), photochemical efficiency, and $CO_2$ compensation point ($CO_{2\;comp}$). Therefore, photosynthetic activity will be sharply decreased with a long period of 8~12% of full sunlight. With the shading level decreased, carotenoid content and non-photochemical fluorescence quenching (NPQ) increased to prevent excessive light damage. This result suggested that growth and physiology of S. deltoides adapted to high light intensity through regulating its internal mechanism.

Effect of Shading on Japanese Apricot Fruit Yield and Quality (차광이 매실의 수량 및 품질에 미치는 영향)

  • Jung Gun Cho;Sung Ku Kang;Seung Heui Kim;Sang Kun Park;Yong Bum Kwack
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.4
    • /
    • pp.84-89
    • /
    • 2024
  • Light is an important component among which plays a crucial role in determining the production and quality of fruit trees. Since the disturbance of light directly leads to reduced photosynthetic efficiency, their damage can be increased especially in fruit trees such as Japanese apricots with a short growing time. In this study, we investigated how the effects of shading condition can affect the production and quality of Japanese apricots according to increased damages by light disturbance in the main orchard complex. The average photosynthetically active radiation (PAR) level in Japanese apricots was rapidly dropped as the shading time was increased compared to the control (304 μmol/m2/s) and the PAR level decreased to 142 μmol/m2/s after shaded for eight hours. The maximum photosynthetic efficiency, with a PAR value of 900 to 1,000 μmol/m2/s, corresponds to the time period without shading and the time period with 2 hours of shading, and these times range from 11 a.m. to 3 p.m. And the time period for shading for 4 hours was from 1:00 p.m. to 2:00 p.m., and under conditions of shading for 6 and 8 hours, the effect was a low amount of light. There was no difference in the weight of Japanese apricots during 2 hours shading time, however, it was significantly reduced as shading time were increased. The difference of the acid content and L/D ratio was not significant on shading time, but the SSC was decreased as times going on. In conclusion, our results indicate that the shading for more than 2 hours make negative effects to decrease the weight and SSC and the yield and affects directly to drop in fruit quality.

The Reduction of Energy Consumption by the Exterior Horizontal Shading Device during Design for the Retrofit of Public Buildings (공공청사 리트로핏 설계 시 외부 수평 차양 장치에 따른 에너지 소비량 절감 방안)

  • Auh, Jin Sun;Jang, Ji-Hoon;Leigh, Seung-Bok;Kim, Byungseon Sean
    • KIEAE Journal
    • /
    • v.17 no.2
    • /
    • pp.29-34
    • /
    • 2017
  • Purpose: Recently, significant heat loss through the window takes place in buildings. Nevertheless, there exists little literature concerning the exterior horizontal shading devices and the design criteria are not clearly settled yet. Applying the exterior horizontal shading devices is more efficient as compared to the interior shading devices in that solar radiation can be directly blocked before passing through the window or the envelope. The purpose of this study is to reduce the internal load by designing the exterior horizontal shading devices and verify the degree of reduction in energy consumption. Method: This study aims to reduce energy consumption in cooling and heating through proposing proper length and shape of the exterior horizontal shading devices in public buildings. In the process, actual energy data and the Design Builder simulation program are utilized. In addition, economic aspect is considered to figure out the optimal length of the exterior horizontal shading devices that maximizes efficiency. Result: As a result, the proper length and shape of the exterior horizontal shading devices are provided as follows: 1) Energy consumption in cooling and heating is minimized when the exterior horizontal shading devices are designed as 0.5m*2. 2) Electricity bill is the lowest when the exterior horizontal shading devices are designed as 3.3m*2. The gap between maximum and minimum electricity bill is about 7.8~14%.

Light Intensity Influences Photosynthesis and Crop Characteristics of Jeffersonia dubia

  • Rhie, Yong Ha;Lee, Seung Youn;Jung, Hyun Hwan;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.584-589
    • /
    • 2014
  • Jeffersonia dubia is a spring-flowering perennial found in rich forests in Korea and Northern China and has potential as an ornamental or medicinal plant. However, illegal picking and land use change have decreased the number of populations and overall population size of this plant in its natural habitat. Although J. dubia has been reported to be a shade-preferring plant, no study has determined the optimum light intensity for its growth. The objectives of this work were to observe the effects of various shading levels on the physiological responses of J. dubia and to determine the proper shading level for cultivation. Treatments consisted of four shading levels (0%, 50%, 75%, and 95% shade) imposed using black mesh cloth. The number of leaves and dry weight increased with decreased shading. The shoot-to-root ratio increased with increased shading, mainly due to decreased root dry weight under shading. Plants showed low net $CO_2$ assimilation rates and $F_v/F_m$ values combined with low dry matter levels when grown under 0% shade (full sunlight). These results indicate that J. dubia plants experience excessive irradiance without shading, resulting in damage to the photosynthetic apparatus. By contrast, the net photosynthesis rate increased as the shading level increased. $F_v/F_m$, the potential efficiency of PSII, was 0.8 under 95% shade, indicating that J. dubia is well-adapted under heavy shading. However, the low dry matter of plants in the 95% shade treatment indicated that the low light intensity under 95% shade led to a decline in plant growth. Thus, moderate light (50% shading) is recommended for cultivating J. dubia without physiological defects.

Loss Analysis according to Configuration Method of AC Module Integrated Converter for Photovoltaic System (태양광 발전 시스템용 AC 모듈 집적형 전력변환기의 구성 방식에 따른 손실 분석)

  • Kang, Seung-Hyun;Son, Won-Jin;Ann, Sangjoon;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.311-318
    • /
    • 2020
  • A photovoltaic (PV) system uses an AC module integrated converter (MIC) to operate PV cells at a maximum power point (MPP) and for high efficiency. The MPP of a PV cell varies depending on partial shading conditions, and loss occurs differently according to the configuration method of the PV-MIC. Therefore, this study compares the losses of passive components and power semiconductors according to the partial shading conditions of the PV module. Theoretical loss analysis is performed using parameters for the datasheet and PSIM simulation results. Analysis results verify that the one-stage PV-MIC demonstrates high efficiency.