• Title/Summary/Keyword: Shading System

Search Result 264, Processing Time 0.035 seconds

A Study on the Double-Wall Greenhouse Filled with Styrene Pellets (입자충전형 이중벽 온실에 관한 연구)

  • 이석건;이종원;이현우
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.59-67
    • /
    • 1995
  • This study was conducted to develope the automatic insulation system which control inside temperature of the greenhouse. For this purpose, the double- wall greenhouse and system which could automatically supply and discharge styrene pellets were constructed and abrasion of the pellets, blower ability, insulating property, transmittance and shading effect were analyzed by the experiments. The results obtained from this study can be summarized as follows : 1. It took an hour and fifteen minutes to supply and discharge about 2㎥ pellets in the experimental greenhouse. However, it is possible to reduce the operation time by proper selection of the blower and exhaust port, and by proper control of the supply and return pipe. 2. It was founded that the indirect delivery way was more profitable than the direct one in the supply and return of pellets. 3. When the transmittance was measured between 10 a.m. and 3 p.m., the average light transmissivity rate was 67%. 4. In winter nighttime, the inside temperature of the double- wall greenhouse with out the pellets was higher than the outside temperature by 3.4$^{\circ}C$ on an average. However, the inside temperature of the double - wall greenhouse with insulated area 73% was higher than the outside by one 6.6$^{\circ}C$ on an average, and the inside temperature of the greenhouse with insulated area 100% was higher than outside one by 13.5$^{\circ}C$ on an average. Therefore, it was proved that the insulating ability of the double - wall greenhouse in nighttime was excellent. 5. When the outside temperature was 36.9$^{\circ}C$ on an average, the inside temperature of the double- wail greenhouse with insulated area 100% was 3$0^{\circ}C$ on an average. As the inside temperature was lower than the outside one by 7$^{\circ}C$ on an average, we could know that the shading effects of the double- wall greenhouse were excellent in summer daytime.

  • PDF

Selection of Vegetables and Fertigation Methods for Veranda Gardening (베란다 재배에 적합한 채소작물 및 관비방법 선발)

  • Moon, Ji-Hye;Lee, Sang-Gyu;Jang, Yoon-Ah;Lee, Woo-Moon;Lee, Ji-Weon;Kim, Seung-Yu;Park, Hyun-Jun
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.314-321
    • /
    • 2007
  • This study was conducted to select leaf vegetables suitable for cultivation in apartment verandas and simple and easy fertigation method for home gardening. In order to develop the convenient fertigation method, hydroponics, wick irrigation, and overhead irrigation methods were compared. For the wick irrigation, two types of nutrient sources were used; one was slow release fertilizers mixed with medium and the other one was nutrient solution filled in container located under pots. The growth of leafy lettuce, leaf mustard, and leaf beet was better in both of the wick irrigation methods rather than in overhead irrigation and hydroponics. The wick irrigation method is very easy, so that it is expected to bring a good result from the cultivating and managing point of view, if it brings with commercialized system along with slow release fertilizer. As a result of investigation of environment such as temperature, relative humidity, and irradiance level in apartment verandas in autumn the highest irradiance level during a day was just 48% and 35% in verandas facing south and feeing southeast, respectively, comparing to that in greenhouse. The light environment was investigated as a limiting factor for vegetable growing in verandas. Therefore, to select the vegetables showing good growth under low irradiance environment, nine leaf vegetables such as romaine lettuce, lent lettuce, head lettuce, endive, pak-choi, leaf mustard, garland chrysanthemum, leaf beet, and Chinese chive were grown under 0%, 50%, 70%, 90% shading. Among them, Chinese chive showed the best growth under low irradiance levels. Endive showed line growth reduction according to shading degree, however, even under 90% shading condition, it showed good growth. And then leafy lettuce, garland chrysanthemum, and pak-choi followed. Therefore, these results will be of help in selecting vegetables for veranda gardening with different light levels.

A Study on Fabric Color Mapping for 2D Virtual Wearing System (2D 가상 착의 시스템의 직물 컬러 매핑에 관한 연구)

  • Kwak, No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.7 no.4
    • /
    • pp.287-294
    • /
    • 2006
  • Mass-customization is fast growing a segment of the apparel market. 2D Virtual wearing system is one of visual support tools that make possible to sell apparel before producing and reduce the time and costs related to product development and manufacturing in the world of apparel mass-customization. This paper is related to fabric color mapping method for 2D image-based virtual wearing system. In proposed method, clothing shape section of interest is segmented from a clothes model image using a region growing method, and then mapping a new fabric color selected by user into it based on its intensity difference map is processed. With the proposed method in 2D virtual wearing system, regardless of color or intensity of model clothes, it is possible to virtually change the fabric color with holding the illumination and shading properties of the selected clothing shape section, and also to quickly and easily simulate, compare, and select multiple fabric color combinations for individual styles or entire outfits.

  • PDF

Development of System Configuration and Diagnostic Methods for Tongue Diagnosis Instrument (설진 기기의 시스템 구성 및 진단 방법 개발)

  • Kim, Keun-Ho;Do, Jun-Hyeong;Ryu, Hyun-Hee;Kim, Jong-Yeol
    • Korean Journal of Oriental Medicine
    • /
    • v.14 no.3
    • /
    • pp.89-95
    • /
    • 2008
  • A tongue shows physiological and clinicopathological changes of inner organs. Visual inspection of a tongue is not only convenient but also non-invasive. To develop an automat ic tongue diagnosis system for an objective and standardized diagnosis, the separation of the tongue are a from a facial image and the detection of coatings, spots and cracks are inevitable but difficult since the colors of a tongue, lips, and skin in a mouth as well as those of tongue furs and body are similar. The propose d method includes preprocessing with down-sampling and edge enhancement, over-segmentation, detecting positions with a local minimum over shading from the structure of a tongue, and correcting local minima or detecting edge with color difference. The proposed method produces the region of a segmented tongue, and then decomposes the color components of the region into hue, saturation and brightness, resulting in classifying the regions of tongue furs(coatings) into kinds of coatings and substance and segmenting them. Spots are detected by using local maxima and the variation of saturation, and cracks are searched by using local minima and the directivity of dark areas in brightness. The results illustrate the segmented region with effective information, excluding a non-tongue region and also give us accurate discrimination of coatings and the precise detection of spots and cracks. It can be used to make an objective and standardized diagnosis for an u-Healthcare system as well as a home care system.

  • PDF

The Simplified Air Barrier System in the Perimeter Area of Building (간이형 에어베리어 시스템 적용사례 분석)

  • Cho, Jin-Kyun;Shin, Seon-Joon;Cha, Ji-Hyoung;Sung, Jae-Ho;Hong, Min-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.906-911
    • /
    • 2008
  • Because the perimeter of buildings is strongly influenced by solar and the outdoor air temperature, the area has different environmental properties compared to the interior of a building, as in summer heat gain, and in winter heat loss. In particular, if the external wall is glass, the characteristics of the glass material make it pervious to outside conditions, thereby making big changes to the thermal environment. By combining shading device and the efficient exhaust system, an energy saving can be achieved compared to no air barrier systems. The simplified air barrier system is developed with the idea that energy could be conserved by carefully and effectively blowing out the air caught between the glass surface and the roller blind. The way it is configured is therefore by making the roller blind's air-path, and by placing the air output ducts in the most optimum positions. This simplified air barrier system will give improvement in the thermal environment of the parameter area that is strongly affected by solar and the outdoor condition.

  • PDF

Improvement of the Power Generation of Photovoltaic Generation System using Rotating Reflector (회전 반사판을 이용한 태양광발전장치의 발전량 향상)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.157-162
    • /
    • 2020
  • In the existing photovoltaic generation system, the system equipped with the reflecting plate is a method in which solar energy (insolation) is concentrated on the surface of the photovoltaic module. However, the solar energy (insolation) lost by being reflected back through the solar module is not considered. Although a method of increasing the amount of power generated by installing a reflector around the solar modules has been proposed, this affects the power generation degradation caused by the shading of other solar modules. Therefore, in order to improve this problem, in this paper, 1) without affecting the development of photovoltaic module according to the shade, 2) photovoltaic module using a reflector rotating the solar energy (insolation) lost by the solar module Study and suggest how to join again. Therefore, the loss of solar energy (insolation) can be minimized through the method of recycling the solar energy according to the countless reflection angle of the lost solar energy (insolation). As a result, it is possible to increase the amount of power generation of the photovoltaic generation system by maximizing the amount of power generation for the same solar radiation.

A Parallel Processing System for Visual Media Applications (시각매체를 위한 병렬처리 시스템)

  • Lee, Hyung;Pakr, Jong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1A
    • /
    • pp.80-88
    • /
    • 2002
  • Visual media(image, graphic, and video) processing poses challenge from several perpectives, specifically from the point of view of real-time implementation and scalability. There have been several approaches to obtain speedups to meet the computing demands in multimedia processing ranging from media processors to special purpose implementations. A variety of parallel processing strategies are adopted in these implementations in order to achieve the required speedups. We have investigated a parallel processing system for improving the processing speed o f visual media related applications. The parallel processing system we proposed is similar to a pipelined memory stystem(MAMS). The multi-access memory system is made up of m memory modules and a memory controller to perform parallel memory access with a variety of combinations of 1${\times}$pq, pq${\times}$1, and p${\times}$q subarray, which improves both cost and complexity of control. Facial recognition, Phong shading, and automatic segmentation of moving object in image sequences are some that have been applied to the parallel processing system and resulted in faithful processing speed. This paper describes the parallel processing systems for the speedup and its utilization to three time-consuming applications.

A Study of the Architectural Characteristic Depending upon the Module in the BIPV System (BIPV 시스템에서의 모듈 종류에 따른 건축적 특성 연구 - 채광형 시스템을 중심으로 -)

  • Lee, Eung-Jik;Lee, Chung-Sik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.196-202
    • /
    • 2008
  • Effective climate protection is a most important tasks of our time. The BIPV is one of the most interesting and promisingly possibilities of an active use of solar energy at the building. In this study it was analyzed by the case study the function of the requirement of the BIPV-module as building material and this architectural characteristic according to the kind of the module. Therefore the goal of this study is to get securing the application information of BIPV as windowpane. BIPV modules are manufactured in the form of G/G. In the case of the crystal type the Transparent and the light Transmission is to be adjusted by the spacer attitude of the cell. Although this type could not be optimal for light effect of indoors because of the inequality of shade, the moving shade play makes a dramatic Roomimage by the run of sun. The application of this type would be for canopy, window or roof in the corridor or resounds. With amorphous the type it is to be manufactured simply largely laminar, and thus that will shorten building process. There is a relatively good economy to use and to the window system easily. After the production technology is easy the transparency of the modules to adjust, and the module shows to a high degree constant characteristics of light permeability and transparency. Without mottle of module shade is good the use for the window or roof glazing of office, library, classroom, etc. to adapt. The BIPV modules took generally speaking a function as building material to the daylight use, shading, isolation and also to the sight. That means that BIPV modules have as multifunctional system to sustainable architecture good successes and they are at the same time as Design element for architecture effectively.

  • PDF

Integral Design and Structural Analysis for Safety Assessment of Domestic Specialized Agrivoltaic Smart Farm System (한국형 영농형 태양광 스마트팜 시스템의 종합설계 및 구조해석을 통한 안전성 검토)

  • Lee, Sang-ik;Kim, Dong-su;Kim, Taejin;Jeong, Young-joon;Lee, Jong-hyuk;Son, Younghwan;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.21-30
    • /
    • 2022
  • Renewable energy systems aim to achieve carbon neutrality and replace fossil fuels. Photovoltaic technologies are the most widely used renewable energy. However, they require a large operating area, thereby decreasing available farmland. Accordingly, agrivoltaic systems (AVSs)-innovative smart farm technologies that utilize solar energy for crop growth and electricity production-are attracting attention. Although several empirical studies on these systems have been conducted, comprehensive research on their design is lacking, and no standard model suitable for South Korea has been developed. Therefore, this study created an integral design of AVS reflecting domestic crop cultivation conditions and conducted a structural analysis for safety assessment. The shading ratio, planting distance, and agricultural machinery work of the system were determined. In addition, national construction standards were applied to evaluate their structural safety using a finite element analysis. Through this, the safety of this system was ensured, and structural considerations were put forward. It is expected that the AVS model will allow for a stable utilization of renewable energy and smart farm technologies in rural areas.

Thermal Characteristics Investigation of Spaceborne Mesh Antenna with Dual-parabolic Surfaces (이중막 구조를 적용한 우주용 전개형 메쉬 안테나의 열적 특성 분석)

  • Kim, Hye-In;Chae, Bong-Geon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.86-93
    • /
    • 2022
  • Generally, a deployable solar panel is used primarily to achieve sufficient power output to perform the mission. However, temperature distribution on the antenna reflector may increase due to the shading effect induced by the presence of the deployable solar panels. Appropriate thermal design is critical to minimize the thermal deformation of the mesh antenna reflector in harsh on-orbit thermal environments to ensure remote frequency (RF) performance. In this paper, we proposed a dual-surface primary reflector consisting of a mesh antenna and a flexible fabric membrane sheet. This design strategy can contribute to thermal stabilization by using a flexible solar panel on the rear side of membrane sheet to reduce the temperature distribution caused by the deployable solar panel. The effectiveness of the mesh antenna design strategy investigates through on-orbit thermal analysis.