• Title/Summary/Keyword: Sf9 cells

Search Result 94, Processing Time 0.025 seconds

Cross-reactivity of Human Polyclonal Anti-GLUT1 Antisera with the Endogenous Insect Cell Glucose Transporters and the Baculovirus-expressed GLUT1

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.7 no.4
    • /
    • pp.161-166
    • /
    • 2001
  • Most mammalian cells take up glucose by passive transport proteins in the plasma membranes. The best known of these proteins is the human erythrocyte glucose transporter, GLUT1. High levels of heterologous expression far the transporter are necessary for the investigation of its three-dimensional structure by crystallization. To achieve this, the baculovirus expression system has become popular choice. However, Spodoptera frugiperda Clone 9 (Sf9) cells, which are commonly employed as the host permissive cell line to support baculovirus replication and protein synthesis, grow well on TC-100 medium that contains 0.1% D-glucose as the major carbon source, suggesting the presence of endogenous glucose transporters. Furthermore, very little is known of the endogenous transporters properties of Sf9 cells. Therefore, human GLUT1 antibodies would play an important role for characterization of the GLUT1 expressed in insect cell. However, the successful use of such antibodies for characterization of GLUT1 expression m insect cells relies upon their specificity for the human protein and lack of cross-reaction with endogenous transporters. It is therefore important to determine the potential cross-reactivity of the antibodies with the endogenous insect cell glucose transporters. In the present study, the potential cross-reactivity of the human GLUT1 antibodies with the endogenous insect cell glucose transporters was examined by Western blotting. Neither the antibodies against intact GLUT1 nor those against the C-terminus labelled any band migrating in the region expected fur a protein of M$_r$ comparable to GLUT1, whereas these antibodies specifically recognized the human GLUT1. Specificity of the human GLUT1 antibodies tested was also shown by cross-reaction with the GLUT1 expressed in insect cells. In addition, the insect cell glucose transporter was found to have very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter.

  • PDF

The Uptake of 2-deoxy-D-glucose (2dGlc) by the Endogenous Sugar Transporter(s) of Spodoptera frugiperda Clone 21-AE Cells and the Inhibition of 2dGIc Transport in the Insect Cells by Fructose and Cytoc halasin B

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.9 no.4
    • /
    • pp.177-181
    • /
    • 2003
  • The baculovirus/Spodoptera frugiperda (Sf) cell system has become popular for the production of large amounts of the human erythrocyte glucose transporter, GLUT1, heterologously. However, it was not possible to show that the expressed transporter in insect cells could actually transport glucose. The possible reason for this was that the activity of the endogenous insect glucose transporter was extremely high and so rendered transport activity resulting from the expression of exogenous transporter very difficult to detect. Sf21-AE cells are commonly employed as the host permissive cell line to support the baculovirus AcNPV replication and protein synthesis. The cells grow well on TC-100 medium that contains 0.1 % D-glucose as the major carbon source, strongly suggesting the presence of endogenous glucose transporters. However, unlike the human glucose transporter, very little is known about properties of the endogenous sugar transporter(s) in insect cells. Thus, the uptake of 2-deoxy-D-glucose (2dGlc) by Sf21-AE cells and the inhibition of 2dGlc transport in the insect cells by fructose and cytochalasin B were investigated in the present work. The binding assay of cytochalasin B was also performed, which could be used as a functional assay for the endogenous glucose transporter(s) in the insect cells. Sf21-AE cells were infected with the recombinant virus AcNPV-GT or no virus, at a multiplicity of infection (MOI) of 5. Infected cells were resuspended in PBS plus and minus 300 mM fructose, and plus and minus 20 $\mu$M cytochalasin B for use in transport assays. Uptake was measured at 28$^{\circ}C$ for 1 min, with final concentration of 1 mM deoxy-D-glucose, 2-[1,2-$^3$H]- or glucose, L-[l,$^3$H]-, used at a specific radioactivity of 4 Ci/mol. The results obtained demonstrated that the sugar uptake in uninfected cells was stereospecific, and was strongly inhibited by fructose but only poorly inhibitable by cytochalasin B. It is therefore suggested that the Sf21-AE glucose transporter has very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter.

  • PDF

Bombyx mori Protein Disulfide Isomerase (bPDI) Protects Sf9 Cells from Endoplasmic Reticulum (ER) Stress (소포체 스트레스에 대한 Protein Disulfide Isomerase의 세포보호효과)

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Choi, Kwang-Ho;Kang, Seok-Woo;Kwon, Ki-Sang;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1129-1134
    • /
    • 2007
  • In the previous our study, a cDNA that encodes protein disulfide isomerase from Bombyx mori (bPDI)was isolated and characterized. bPDI has an open reading frame of 494 amino acids contained two PDI-typical thioredoxin active site of WCGHCK and ER (endoplasmic reticulum) retention signal of the KDEL motif at its C-terminal. Recent studies have demonstrated that misfolded proteins are accumulated in many diseases including Alzheimer’s, goiter, emphysema, and prion infections. bPDI was over-expressed or knock-downed in Sf9 cells to study the relationship between bPDI expression and protections against protein misfolding. bPDI gene was cloned in insect expression vector pIZT/V5-His for over-expression and bPDI double-stranded RNA (dsRNA) was generated for knock-down. Over-expression of bPDI significantly improved survival rate, but bPDI dsRNA transfection significantly reduced survival rate after 48 hours exposure. In mock-transfected or wild-type cells had no significant effect. The results support the view that bPDI is one of the important intracellular components for cell protect mechanism, especially, against ER stress such as protein misfolding.

Overexpression, Purification, and Characterization of the Herpes Simplex Virus-1 DNA Polymerase-UL42 Protein Complex

  • Song, Byeong-Doo;Lehman, I. Robert
    • BMB Reports
    • /
    • v.31 no.6
    • /
    • pp.585-589
    • /
    • 1998
  • The herpes simplex virus type-1 (HSV-1)-encoded DNA polymerase consists of two subunits, the products of the UL30 and UL42 genes. UL30 and UL42 were coexpressed in Sf9 cells infected with recombinant baculoviruses carrying the two genes. The UL30 and UL42 gene products remained tightly associated throughout the purification, which led to a near homogeneous heterodimer composed of the DNA polymerase and UL42 protein. The DNA polymerase-UL42 protein heterodimer, purified from the recombinant baculovirus-infected Sf9 cells, showed the same high degree of processivity of deoxynucleotide polymerization as the enzyme purified from the HSV-1 infected primate cells. Like the latter, it contained a 3'-5' exonuclease activity that specifically hydrolyzes an incorrectly matched nucleotide at the 3' terminus of a primer, thereby contributing to the fidelity of DNA replication.

  • PDF

Biochemical Analysis of Anagrapha falcifera NPV Attachment to Spodoptera frugiperda 21 Cells

  • PARK, JIN O;JAI MYUNG YANG;IN SIK CHUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.361-364
    • /
    • 1999
  • The binding characteristics of Anagrapha falcifera nuclear polyhedrosis virus (AtNPV) to Spodoptera frugiperda 21 (Sf21) cells were investigated. The cells displayed an affinity of 4.7×10/sup 10/M/sup -1/ with about 3,300 binding sites per cell. The biochemical nature of the AfNPV-binding sites on the cell surface was also partially identified. Our findings suggest that the binding-site moiety has a glycoprotein component, but that the direct involvement of oligosacccharides containing N-acetylglucosamine or sialic acid residues in binding is unlikely, and that AfNPV entry into Sf21 cells may be via receptor-mediated endocytosis.

  • PDF

Genomic Recombination of Bombyx mori and Autographa californica Nuclear Polyhedrosis Viruses (누에 및 Autographa californica 핵다각체병 바이러스에 대한 유전자 재조명)

  • 우수동;박범석;박지현;정인식;양재명;강석권
    • Korean journal of applied entomology
    • /
    • v.32 no.4
    • /
    • pp.407-413
    • /
    • 1993
  • Twelve recombinant viruses with wider host range were plaque purified after coinfectian of Autographa cahjornica and Bombyx mOT! NPVs into Sf9 ar BmN-4 cells. Restriction endonucleases analysis of the recombinant's DNAs showed that the recombinatIOn between AcNPV and BmNPV genomes had occurred more than once. When the recombinam RecB-8, derived from BrnN-4 cells, was observed by electron rntcroscopy, the shape of the polyhedron was a regular tetrahedron, and few virions were occluded into a polyhedron.

  • PDF

Optimized Expression, Purification, and Rapid Detection of Recombinant Influenza Nucleoproteins Expressed in Sf9 Insect Cells

  • Yoon, Sung-Jin;Park, Young-Jun;Kim, Hyun Ju;Jang, Jinwoo;Lee, Sang Jun;Koo, Sunwoo;Lee, Moo-Seung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1683-1690
    • /
    • 2018
  • Accurate and rapid diagnosis of influenza infection is essential to enable early antiviral treatment and reduce the mortality associated with seasonal and epidemic infections. Immunochromatography is one of the most common methods used for the diagnosis of seasonal human influenza; however, it is less effective in diagnosing pandemic influenza virus. Currently, rapid diagnostic kits for pandemic influenza virus rely on the detection of nucleoprotein (NP) or hemagglutinin (HA). NP detection shows higher specificity and is more sensitive than HA detection. In this study, we time-dependently screened expression conditions, and herein report optimal conditions for the expression of recombinant nucleoprotein (rNP), which was 48 h after infection. In addition, we report the use of the expressed rNP in a rapid influenza diagnostic test (SGT i-flex Influenza A&B Test). We constructed expression vectors that synthesized rNP (antigen) of influenza A and B in insect cells (Sf9 cells), employed the purified rNP to the immunoassay test kit, and clearly distinguished NPs of influenza A and influenza B using this rapid influenza diagnostic kit. This approach may improve the development of rapid test kits for influenza using NP.

Investigation of the Nature of the Endogenous Glucose Transporter(s) in Insect Cells

  • Lee, Chong-Kee
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.429-435
    • /
    • 1999
  • Unlike the mammalian glucose transporter GLUT1, little is known about the nature of the endogenous sugar transporter(s) in insect cells. In order to establish the transport characteristics and other properties of the sugar transport proteins of Sf9 cells, a series of kinetic analyses was performed. A saturable transport system for hexose uptake has been revealed in the insect cells. The apparent affinity of this transport system(s) for 2-deoxy-D-glucose was relatively high, the $K_m$ for uptake being <0.5 mM. To further investigate the substrate and inhibitor recognition properties of the insect cell transporter, the ability of other sugars or drugs to inhibit 2-deoxy-D-glucose transport was examined by measuring inhibition constants ($K_j$). Transport was inhibited by D-mannose, D-glucose, and D-fructose. However, the apparent affinity of the C-4 epimer, D-galactose, for the Spodoptera transporter was relatively low, implying that the hydroxyl group at the C-4 position may play a role in the strong binding of glucose and mannose to the transporter. The results also showed that transport was stereoselective, being inhibited by D-glucose but not by L-glucose. It is therefore concluded that insect cells contain an endogenous glucose transport activity that in several aspects resembles the human erythrocyte glucose transporter. However, the mammalian and insect transporters were different in some of their kinetic properties, namely, their affinities for fructose and for cytochalasin B.

  • PDF

Expression of Human Papillomavirus Type 16, Prototype and Natural Variant E7 Proteins using Baculovirus Expression System

  • Han, Hee-Sung;Kee, Sun-Ho;Hwang, Soon-Bong;Kim, Hyung-Jun;Cho, Kyung-A;Kim, Yoon-Won;Cho, Min-Kee;Chang, Woo-Hyun
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.1
    • /
    • pp.53-62
    • /
    • 1998
  • Human papillomavirus (HPV) 16, E7 proteins derived from the prototype (Bac73) and natural variant (Bac101) E7 open reading frame were produced in Sf9 insect cells. The variant E7 gene occurred naturally by substitution mutation at the position of 88 nucleotide, resulting serine instead of asparagine. Using E7 specific monoclonal antibody (VD6), both E7 proteins were identified in recombinant baculovirus infected SF9 cells. Radiolabelling and immunoprecipitation analysis revealed that both E7 proteins were phosphoproteins. Immunostaining result showed that E7 proteins were mainly localized in the cytoplasm. Nuclear form of E7 proteins was also detected after a sequential fractionation procedure for removing chromatin structure. Considering that the VD6 recognition site in E7 protein is located within 10 amino acid at the N-terminus, this region appears to be blocked by the nuclear component. Western blot analysis revealed that nuclear form was more abundant than cytoplasmic E7 proteins. Time course immunostaining showed that the primary location of E7 protein was the nucleus and exported to the cytoplasm as proteins were accumulated. These events occurred similarly in both Bac73 and Bac101 infected Sf9 cells, suggesting that these two proteins may have similar biological functions.

  • PDF