• Title/Summary/Keyword: Seyfert

Search Result 73, Processing Time 0.027 seconds

STUDY OF MILLI-JANSKY SEYFERT GALAXIES WITH STRONG FORBIDDEN HIGH-IONIZATION LINES USING THE VERY LARGE ARRAY SURVEY IMAGES

  • LAL, DHARAM V.
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.6
    • /
    • pp.399-412
    • /
    • 2015
  • We study the radio properties at 1.4 GHz of Seyfert galaxies with strong forbidden highionization lines (FHILs), selected from the Sloan Digital Sky Survey - a large-sized sample containing nearly equal proportion of diverse range of Seyfert galaxies showing similar redshift distributions compiled by using the Very Large Array survey images. The radio detection rate is low, 49%, which is lower than the detection rate of several other known Seyfert galaxy samples. These galaxies show low star formation rates and the radio emission is dominated by the active nucleus with ≤10% contribution from thermal emission, and possibly, none show evidence for relativistic beaming. The radio detection rate, distributions of radio power, and correlations between radio power and line luminosities or X-ray luminosity for narrow-line Seyfert 1 (NLS1), Seyfert 1 and Seyfert 2 galaxies are consistent with the predictions of the unified scheme hypothesis. Using correlation between radio and [O III] λ 5007 Å luminosities, we show that ∼8% sample sources are radio-intermediate and the remaining are radio-quiet. There is possibly an ionization stratification associated with clouds on scales of 0.1-1.0 kpc, which have large optical depths at 1.4GHz, and it seems these clouds are responsible for free-free absorption of radio emission from the core; hence, leading to low radio detection rate for these FHIL-emitting Seyfert galaxies

INFRARED - X-RAY CONNECTION IN NEARBY ACTIVE GALACTIC NUCLEI; AKARI AND MAXI RESULTS

  • Isobe, Naoki;Nakagawa, Takao;Yano, Kenichi;Baba, Shunsuke;Oyabu, Shinki;Toba, Yoshiki;Ueda, Yoshihiro;Kawamuro, Taiki
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.185-187
    • /
    • 2017
  • Combining the AKARI Point Source Catalog and the 37-month Monitor of All-sky X-ray Image (MAXI) catalog, the infrared and X-ray properties of nearby active galactic nuclei were investigated. The 37-month MAXI catalog tabulates 100 nearby Seyfert galaxies, 73 of which are categorized into Seyfert I galaxies. Among these Seyfert galaxies, 69 ones were found to have an AKARI infrared counterpart. For the Seyfert I galaxies in this sample, a well-known correlation was found between the infrared and X-ray luminosities. However, the observed X-ray luminosity of the Seyfert II galaxies tends to be lower for the infrared luminosity than the Seyfert I galaxies. This suggests that the X-ray absorption is significant in the Seyfert II galaxies. The Seyfert II galaxies seem to have a bimodal distribution of the IR color between $18{\mu}m$ and $90{\mu}m$. Especially, a large fraction of the Seyfert II galaxies exhibits a redder IR color than the Seyfert I galaxies. A possible origin of the redder IR color is briefly discussed, in relation to the star formation activity in the host galaxy, and to the X-ray absorption.

IUE SPECTRA OF THE SEYFERT 1 GALAXIES Mrk 335 and NGC 4051

  • HYUNG SIEK;KIM HYOUK;LEE Woo BAlK;LEE SEONG-JAE;RYU DONGSU;LEE HEE-WON
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.2
    • /
    • pp.81-88
    • /
    • 2000
  • The international ultraviolet explorer (IUE) spectra of a low dispersion $\~6{\AA}$, have been investigated for two Seyfert 1 galaxies, Mrk 335 and NGC 4051, well known for the line variability. The electron densities of broad line region (BLR) of these variable Seyfert 1 galaxies have been derived, which showed a non-linear abrupt variation from $10^8$ to $10^{10} cm-3$ within a month. We also found the excitation (or temperature) changes in the Mrk 335 BLR from the IUE broad line profiles analysis, but no such evidence in the NGC 4051. The large amount of mass inflow activity through the bar or spiral structure of host galaxies, may trigger the density change in BLR and emission line variability for both objects. Mass of the giant black holes appear to be order of $10^7\;M_{\bigodot}$ for both variable Seyfert l's.

  • PDF

Testing the Consistency of Unified Scheme of Seyfert Galaxies

  • Iyida, Evaristus U.;Eya, Innocent O.;Eze, Christian I.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.43-50
    • /
    • 2022
  • The unified scheme of Seyfert galaxies hypothesizes that the observed differences between the two categories of Seyfert galaxies, type 1 (Sy1) and type 2 (Sy2) are merely due to the difference in the orientation of the toroidal shape of the obscuring material in the active galactic nuclei. We used in this paper, a sample consisting of 120 Seyfert galaxies at 1.40 × 109 Hz in radio, 2.52 × 1017 Hz in X-ray and 2.52 × 1023 Hz in γ-ray luminosities observed by the Fermi Large Area Telescope (Fermi-LAT) in order to test the unified scheme of radio-quiet Seyfert galaxies. Our main results are as follows: (i) We found that the distributions of multiwave luminosities (Lradio, LX-ray, and Lγ-ray) of Sy1 and Sy2 are completely overlapped with up to a factor of 4. The principal component analysis result reveals that Sy1 and Sy2 also occupy the same parameter spaces, which agrees with the notion that Sy1 and Sy2 are the same class objects. A Kolmogorov-Smirnov test performed on the sub-samples indicates that the null hypothesis (both are from the same population) cannot be rejected with chance probability p ~ 0 and separation distance K = 0.013. This result supports the fact that there is no statistical difference between the properties of Sy1 and Sy2 (ii) We found that the coefficient of the best-fit linear regression equation between the common properties of Sy1 and Sy2 is significant (r > 0.50) which plausibly implies that Sy1 and Sy2 are the same type of objects observed at different viewing angle.

BLR Density Variations of the Seyfert 1 Galaxies NGC 4151 and NGC 5548 (Seyfert 1 은하 NGC 4151, NGC 5548의 BLR 밀도 변화)

  • Son, Dong-Hoon;Hyung, Siek
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.495-501
    • /
    • 2004
  • Using numerous ground-based or space-based telescopes by many astronomers, AGN spectroscopic monitoring campaigns have been carried out over many years to study the variability of continua and emission lines. We investigate the SWP IUE spectra of a large aperture configuration for the Seyfert 1 galaxies NGC 4151 and NGC 5548. We estimate the BLR electron number densities and their variation from the line ratios of C III] 1909 to Si III] 1892. With the ratios of C IV 1550 to C III] 1909 which give us the information on the ionization parameter of BLR, we try to find the physical conditions of the BLR and activities of he super massive black hole surroundings. The BLR density variations scale as 4 and 8 for NGC 4151 and NGC 5548, respectively. Based on the BLR size and C III] line profiles, we found both black hole masses as about $10^7$ $M_{\odot}$.

On the Radial Velocity Offset for [OIII] Emission Line of LINER Galaxies

  • Bae, Hyun-Jin;Woo, Jong-Hak;Yagi, Masafumi;Yoon, Suk-Jin;Yoshida, Michitoshi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.33.2-33.2
    • /
    • 2012
  • Low-ionization nuclear emission-line region (LINER) galaxies constitute a major fraction of low-luminosity AGN population in the local Universe. In contrast to Seyfert galaxies, it is theoretically expected that LINERs would not have an outflow due to their low Eddington ratio. Using Keck/LRIS spectroscopy on a nearby LINER galaxy SDSS J091628.05+420818.7, we find a significant radial velocity offset for [OIII]${\lambda}$5007 emission line as - 50 km $s^{-1}$ blueshifted compared to systemic velocity of the galaxy, while other emission lines exhibit no or little offset. The observed [OIII] velocity offset possibly indicates an outflow of gas in the LINER galaxy, and it is probable that we only detected the [OIII] velocity offset because [OIII] ionization region is closer to the accretion disk, hence, more affected by an outflow. We further investigate the [OIII] velocity offset of -4000 SDSS AGN-host galaxies to compare the strength of AGN outflow. We find that a number of both LINER and Seyfert galaxies show [OIII] velocity offset, but the fraction of LINER galaxies with velocity offset is smaller than that of Seyfert galaxies. The preliminary results imply the presence of gas outflow in LINER galaxies, although outflow strength is probably weaker compared to Seyfert galaxies.

  • PDF

STREAMING CIRCUMNUCLEAR GAS OF THE SEYFERT 2 GALAXY NGC 5728

  • Son, Dong-Hoon;Hyung, Siek;Lee, Seong-Jae;Ferruit, Pierre
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.5
    • /
    • pp.125-134
    • /
    • 2009
  • We investigated the circumnuclear region of the Seyfert 2 galaxy NGC 5728, using the CFHT 3.6 m OASIS $[S_{II}]$, $[O_{III}]$ & $H\beta$ spectral images complemented with the IUE spectra. The physical condition of the circumnuclear zone has been derived: the gas density (indicated by $[S_{II}]$6716/31 ratio) around the C core is generally similar to that around the NW core, i.e., $\sim500cm^{-3}$. However, there appears to be evidence of a higher density shell in front of the NW core, $\sim10^4cm^{-3}$ at -250 km $s^-1$. The IUE $Si_{III}$]1892/$C_{III}$]1909 ratio implies a possible presence of a broad emission region of gas densities of $\sim10^{10}cm^{-3}$. The SE cone and surrounding area show several prominent features, while the NW cone does not show any particular structure: we identified three prominent blobs in the SE cone and one possible candidate in the NW cone. The outflow activities exist within the relatively large conic opening angle. We discussed the possibility of inflow or outflow activities of blobs found in the circumnuclear region of NGC 5728. The gas around two cores, two cones, and several blobs, is likely to be excited by the AGN hot source(s).

DOES THE JET PRODUCTION EFFICIENCY OF RADIO GALAXIES CONTROL THEIR OPTICAL AGN TYPES?

  • Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.4
    • /
    • pp.159-161
    • /
    • 2014
  • The jet production efficiency of radio galaxies can be quantified by comparison of their kinetic jet powers $P_{jet}$ and Bondi accretion powers $P_B$. These two parameters are known to be related linearly, with the jet power resulting from the Bondi power by multiplication with an efficiency factor of order 1%. Using a recently published (Nemmen & Tchekhovskoy 2014) high-quality sample of 27 radio galaxies, I construct a $P_B$ - $P_{jet}$ diagram that includes information on optical AGN types as far as available. This diagram indicates that the jet production efficiency is a function of AGN type: Seyfert 2 galaxies seem to be systematically (with a false alarm probability of $4.3{\times}10^{-4}$) less efficient, by about one order of magnitude, in powering jets than Seyfert 1 galaxies, LINERs, or the remaining radio galaxies. This suggests an evolutionary sequence from Sy 2s to Sy 1s and LINERs, controlled by an interplay of jets on the one hand and dust and gas in galactic nuclei on the other hand. When taking this effect into account, the $P_B$ - $P_{jet}$ relation is probably much tighter intrinsically than currently assumed.