• Title/Summary/Keyword: Sexine ornamentation

Search Result 2, Processing Time 0.016 seconds

Pollen morphology of the genus Aruncus L. (Rosaceae) (개승마속(Aruncus L., 장미과)의 화분형태학적 연구)

  • Ok, Min-Kyoung;Hong, Suk-Pyo
    • Korean Journal of Plant Taxonomy
    • /
    • v.45 no.4
    • /
    • pp.323-331
    • /
    • 2015
  • Pollen morphological characteristics of 7 taxa of the genus Aruncus L. (Rosaceae) were examined using scanning electron microscopy (SEM) to evaluate the taxonomic implication within the genus. Aruncus pollen grains were monad, tri-colporate with granular membranes, small in size ($P=8.33-12.57{\mu}m$, $E=8.93-14.40{\mu}m$), amb is sub-circular to circular, suboblate to prolate-spheroidal in shape (P/E = 0.68-1.70). The sexine ornamentation in all studied taxa was basically striate but existence of perforation (striate-perforate: A. dioicus, A. dioicus var. acuminatus, A. dioicus var. astilboides, A. dioicus var. pubescens, A. dioicus var. vulgaris; striate-pstilate: A. dioicus var. aethusifolius, A. gombalanus) and the widths of muri and grooves varied according to the taxa. In particular, relatively short, and sharply crested muri being a distinct feature of A. dioicus var. acuminatus. As a result, the various combination of each pollen characteristics could be useful to identify the some taxa of the genus Aruncus.

Microsporogenesis of Hibiscus syriacus L and Its Sporoderm Differentiation (무궁화의 화분형성 및 화분벽의 분화발달)

  • 김인선
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.95-105
    • /
    • 1995
  • Complete microsporogenesis of Hibiscus syriacus L. were carried out employing LM, TEM, and SEM to investigate the pollen ontogeny that undergoes considerable structural differentiation. The process first began with several cell diYisions in the anther primordium that produces 3 different tissues of epidennal, archesporial, and connective tissues. Only archesporial tissue involved further differentiation into the tapetum and formation of reproductive cells, pollen mother cells (PMC). The tapetum and PMC were closely associated with each other structurally and metabolically by exhibiting numerous plasmodesmata, mitochondria, and many small vacuoles in their dense cytoplasm. A callosic wall began to surround the PMC while meiosis took place in the PMC to produce 4 microspores. When thick callose encircled each microspore as a frame, the sporodenn development initiated from the plasma membrane of a pollen grain in a tetrad. The first fonned sporoderm layer was bacules and tectum of sexine that originated from the plasma membrane. After the dissolution of a callose, further development Qf sporoderm continued in the order of nexine 1, nexine 2, and intine layer. The nexine layer was thicker (ca. $2-3.5\;\mu\textrm{m}$) than the intine layer whose thickness was about $0.9-1.5\;\mu\textrm{m}$. Upon completion of the sporoderm development, that is after intine formation, spines and apertures of pollen surface ornamentation initiated from the tectum. Spines were dimorphic, about $4-9\;\mu\textrm{m}\;an;15-20\;\mu\textrm{m}$ in length, and no basal cushion was detected. The mature pollen grains ranged $100-200\;\mu\textrm{m}$ in diameter, but their average was about $170\;\mu\textrm{m}$. About 120 spines were observed over the spheroidal pollen surface. Apertures were simple punctures of $2-3\;\mu\textrm{m}$ in diameter and about 50 apertures were arranged somewhat helically over the surface. Comparing such features of form and size of the pollen, sporodenn sculpture and structure, and aperture and spine conditions with known evolutionary trends in the genus Hibiscus, Hibiscus syriacus seemed to possess many advanced features in the sporodenn differentiation.iation.

  • PDF