• Title/Summary/Keyword: Sewer Pipe

Search Result 149, Processing Time 0.024 seconds

Development of Optimal Design Simulation Model for Least Cost Urban Sewer System Considering Risk (I) (위험도를 고려한 최소비용 도시우수관망 설계의 최적화 모형개발 (I): 모형의 개발과 시험유역의 적용)

  • Jang, Suk-Hwan;Park, Sang-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1021-1028
    • /
    • 2005
  • This study purpose to develop simulation model of optimal design condition of urban storm sewer system considering risk. Urban Storm Sewer Optimal Design Model(USSOD) can compute pipe capacity, pipe slope, crown elevation, excavation depth, risk and return cost in the condition of design discharge. Rational formula is adopted for design discharge and Manning's formula is used for pipe capacity. Discrete differential dynamic programming(DDDP) technique which is a kind of dynamic programming(DP) is used for optimization and first order second moment approximation method and uncertainty analysis is also for developing model. USSOD is applied to hypothetical drainage basin to test and verify, which resulted economical and efficient design in urban drainage sewer system.

Maintenance Management System for Urban Drainage System (도시유역 내배수시설 유지관리시스템)

  • Lee, Jung-Ho;Joo, Jin-Gul;Kim, Eung-Seok;Park, Moo-Jong;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.119-128
    • /
    • 2008
  • Sewer rehabilitation is performed to improve the problem for urban drainage sewer system recently. However the data for the sewer system is not stored enough so that the sewer system is difficult to be managed systematically. In this study, a maintenance management system for urban drainage system is developed to store the data efficiently and manage the system systematically. In the developed system, a hydraulic and hydrologic analysis module is included to test the carrying capacity of a sewer pipe and estimate the amount of combined sewer overflows. The I/I and superannuation evaluation module is included in this system. The module distribute the total inflow/infiltration observed at the several sampling points in a drainage area to the individual pipes of the entire sewer system. Then the superannuation of a sewer pipe is evaluated according to the amount of I/I of the pipe. And in the developed system, the optimal rehabilitation priority module is included to determine the optimal priority and support the decision making for the sewer rehabilitation. The maintenance management system which is developed in this study is constructed by the association with the developed modules and the system is formed as graphical user interface system.

Prediction of structural behavior of PVC sewer manhole (PVC 하수맨홀의 구조적 거동 및 예측)

  • Kim, Sunhee;Cho, Jinkyu;Joo, Hyungjung;Kim, Yongsoo;Yoon, Soonjong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.491-500
    • /
    • 2014
  • Due to rapid urbanization and industrialization, water supply and sewer line systems are also developed relevantly. Manhole is an essential component structure of the pipeline system. Manhole is a structure constructed to accommodate the direction, dimension, differences in level, and easy of maintenance in the pipeline system. In this paper we present the result of investigations pertaining to the structural behavior of PVC sewer manhole buried underground. In the paper mechanical properties of PVC material are reported. In addition, by the finite element analysis (FEA), we confirmed that a PVC double-wall corrugated pipe manhole, when it is buried underground, is safe for the stress as well as buckling strength if the manhole is constructed within the suggested limit of buried depth.

Suggestion of the defect score and condition grading protocol about sewer pipe (하수관로 결함 점수 및 상태 등급 판정 방법 제안)

  • Kim, Jungruyl;Lee, Jaehyun;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • This study was performed to propose the sewer defect scoring, and grading protocols for sewer condition assessment. For this, sewer defect scoring methods were comparatively analyzed and reviewed for four international condition assessment protocols, which are established based on WRc manual. As a result, we proposed a new protocol for sewer condition assessment, in which characteristics of sewer pipes are considered by segment. In reference to the PIM-3, the extent of ground subsidence was adopted to be of importance, and renewal scores increased in accordance with weighting of defects causing structural backfill materials. Also, defect grades of 'Hole' were extended to 5 levels of the grading, and 'Surface Damage' was excluded in defect assessment. The addition of 'Buckling' resulted in reduction of weights in 'Surface Damage' and 'Lining Defects'.

An Optimal Sewer Layout Model to Reduce Urban Inundation (도시침수 저감을 위한 최적 우수관망 설계 모형)

  • Lee, Jung-Ho;Kim, Joong-Hoon;Jun, Hwan-Don
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.777-786
    • /
    • 2011
  • In the previous researches for storm sewer design, the flow path, pipe diameter and pipe slope were determined to minimize the construction cost. But in the sewer networks, the flows can be changed according to flow path. The current optimal sewer layout models have been focussed on satisfying the design inflow for sewer designs, whereas the models did not consider the occurrences of urban inundation from excessive rainfall events. However, in this research, the sewer networks are determined considering the superposition effect to reduce the inundation risk by controlling and distributing the inflows in sewer pipes. Then, urban inundation can be reduced for excessive rainfall events. An Optimal Sewer Layout Model (OSLM) was developed to control and distribute the inflows in sewer networks and reduce urban inundation. The OSLM uses GA (Genetic Algorithm) to solve the optimal problem for sewer network design and SWMM (Storm Water Management Model) to hydraulic analysis. This model was applied to Hagye basin with 44 ha. As the applied results, in the optimal sewer network, the peak outflow at outlet was reduced to 7.1% for the design rainfall event with 30 minutes rainfall duration versus that of current sewer network, and the inundation occurrence was reduced to 24.2% for the rainfall event with 20 years frequency and 1 hour duration.

A Study of Sewer Layout to Control a Outflow in Sewer Pipes (우수관거 흐름 제어를 위한 관망 설계에 관한 연구)

  • Kim, Joong-Hoon;Joo, Jin-Gul;Jun, Hwan-Don;Lee, Jung-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Most developed models are designed to determine pipe diameter, slope and overall layout in order to minimize the cost for the design rainfall for the optimal sewer layout. However, these models are not capable of considering the superposition effect of runoff hydrographs in the sewer pipes. The flow characteristics in the sewer pipes, such as the sewer layout, pipe diameter and slope, vary according to the design of the sewer system. In particular, when the sewer network is modified, the shapes of the runoff hydrographs in the sewer pipes also change because of the superposition effect. In this study, the sewer layout is designed to control and distribute the flows in the sewer pipes, while considering the runoff superposition effect, in order to reduce the inundation risk at each junction. This is accomplished by separating the inflows that enter into each junction by changing the way in which pipes are connected between junctions. And this model combines SWMM (Storm Water Management Model) to perform the hydraulic analysis for the flows in the sewer network. The current sewer layout was modified to minimize the peak outflow at outlet in Garak basin, Seoul, South Korea. As the results, the peak outflows at the outlet were decreased by approximately 20% for the design rainfall during 30 minutes and the total overflows were also decreased for the excessive rainfalls.

An Experimental Study on Evaluation of Repair Mortars with CAC (Calcium Aluminate Cement) for Sewer Pipe (하수관거 보수용 CAC 모르타르 성능평가에 대한 실험적 연구)

  • Chung, Jee-Seung;Kang, Weon-Dae
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.68-75
    • /
    • 2012
  • The biogenic corrosion of mortars adopted in sewage repair by sulfuric acid-producing bacteria was considered in this paper. Calcium aluminate cement (CAC) was known to resist microbiologically-induced corrosion significantly better than portland and blended portland cement.In this study, CAC as well portland cement mortars were tested as main binder to evaluate the corrosion resistance by the chemical immersion test. Replacement ratios of CAC were changed as 0, 20, 40, 50, 60% of OPC binder and 0, 2, 4, 6% of EVA(Ethylene Vinyl Acetate) were also adopted to increase properties of CAC repair mortars in sewage application. Setting time, compressive strength, acid resistance and adhesive strength were measured for various experiments. As a results of the experiments, the proper formulation of repair mortars was found at 40% of CAC and 4% of EVA. Finally, the CAC mortars adopted in field sewer pipe and were demonstrated to superior in adhesion and workability.

An Experimental Investigation for Efficient Operation of Septic Tank (정화조의 효율적인 운영을 위한 실험적 고찰)

  • Lee, Jang-Hown;Lee, Kyeong-Soo;Kho, Soo-Hoon;Song, Min-Hee;Lee, Soo-Hyun;Lee, Yong-Hoon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.123-129
    • /
    • 2012
  • A septic tank is a purification treatment system where night soil and other waste matter is converted into harmless material by the activities of bacteria. Effluent from the septic tank flows into the sewer pipe, and then this effluent affects the quality of water environment and makes foul smell. In this study, through the proper maintenance of septic tank it was tried to minimize the impact of sewer pipe on water quality and fouling smell. BOD removal rate from the septic tank's effluent which exceeded legal cleaning period was investigated for the proper maintenance. BOD Removal rate of the twelve septic tank's effluent is -62.5% to 43.9%. According to the result of BOD removal rate, septic tank cleaning should be done at least once a year. And the pathogenic coliform bacillus in the twelve septic tank's effluent is average 768,000 (MPN/$100m{\ell}$). The chlorine disinfection is needed to remove the pathogenic coliform bacillus in septic tank effluent.

Development of Ultrasonic Sediment-level Sensor for Sewage Pipe Application (하수관 퇴적물 감지를 위한 초음파 퇴적센서 개발)

  • Park, Buem-Keun;Shin, Jeong-Hee;Paik, Jong-Hoo;LEE, Young-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.25-29
    • /
    • 2021
  • In this study, we successfully developed a highly reliable ultrasonic sediment sensor to detect the sediment levels in sewer pipes in harsh environments. The ultrasonic transducer employed in the ultrasonic sediment sensor was designed so as to possess a simple structure. The developed sensor was carefully optimized by simulating the electromechanical characteristics, radiated sound wave pressures, and directivity via finite element analysis. It was also designed to possess a simple mounting structure minimizing the flow disturbance in a 400-mm sewer pipe; additionally, eight ultrasonic transducers were arranged in a four-channel mode, allowing for measurement of the sediment height in five easy steps. Through experimental evaluations, we verified the performance of the ultrasonic sediment-level sensor and its industrial applicability. The results suggested that although the precision value was notably low at 15 mm, the sediment detection performance was adequate; therefore, the developed sensor can potentially be used in industrial applications.

Comparison of infiltation rate for separate sewer system and combined sewer system in sewer maintenance areas (하수관로정비 지역의 분류식과 합류식 하수관로의 침입율 비교)

  • Gu, Gwangmo;Chu, Shaoxiong;Lim, Bongsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.191-200
    • /
    • 2020
  • This study is to improve the efficiency of BTL (Build Transfer Lease) project operation by comparing the infiltration rate based on the data of 5 years of infiltration of the separate sewer system and combined sewer system. In the survey site, the separate sewer system area consists of eight flowmeters in seven treatment basins, and the combined sewer system area consists of eight flowmeters in five treatment basins. The infillration rate was analyzed by night-time domestic flow evaluation method, and the average infiltration rates of the separate sewer system and combined sewer system were 13% and 16%, respectively. Combined sewer system was about 1.3 times higher than the separate sewer system. The average BOD of separate sewer system was 233 mg/L, which was about 2.4 times higher than the combined sewer system was 107 mg/L. In the comparison of the average pipe diameter-length infiltration of separate sewer system and combined sewer system, the separate sewer system and the combined sewer system were about 0.150 ㎥/d/mm/km and about 0.109 ㎥/d/mm/km, respectively. The floating population in mixed residential and commercial areas has been identified as the cause. Therefore, we propose a method to calculate the infiltration rate in consideration of the margin ratio in the area where the night active population is concentrated.