• Title/Summary/Keyword: Sewage treatment system

Search Result 372, Processing Time 0.026 seconds

Assessment of Estuary Reservoir Water Quality According to Upstream Pollutant Management Using Watershed-Reservoir Linkage Model (유역-호소 연계모형을 이용한 상류 오염원 관리에 따른 담수호 수질영향평가)

  • Kim, Seokhyeon;Hwang, Soonho;Kim, Sinae;Lee, Hyunji;Jun, Sang Min;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.1-12
    • /
    • 2022
  • Estuary reservoirs were artificial reservoir with seawalls built at the exit points of rivers. Although many water resources can be saved, it is difficult to manage due to the large influx of pollutants. To manage this, it is necessary to analyze watersheds and reservoirs through accurate modeling. Therefore, in this study, we linked the Hydrological Simulation Program-FORTRAN (HSPF), Environmental Fluid Dynamics Code (EFDC), and Water quality Analysis Simulation Program (WASP) models to simulate the hydrology and water quality of the watershed and the water level and quality of estuary lakes. As a result of applying the linked model in stream, R2 0.7 or more was satisfied for the watershed runoff except for one point. In addition, the water quality satisfies all within 15% of PBIAS. In reservoir, R2 0.72 was satisfied for water level and the water quality was within 15% of T-N and T-P. Through the modeling system, We applied upstream pollutant management scenarios to analyze changes in water quality in estuary reservoirs. Three pollution source management were applied as scenarios, the improvement of effluent water quality from the sewage treatment plant and the livestock waste treatment plant was effective in improving the quality of the reservoir water, while the artificial wetland had little effect. Water quality improvement was confirmed as a measure against upstream pollutants, but it was insufficient to achieve agricultural water quality, so additional reservoir management is required.

Bacterial Community Shift during the Startup of a Full-Scale Oxidation Ditch Treating Sewage

  • Chen, Yajun;Ye, Lin;Zhao, Fuzheng;Xiao, Lin;Cheng, Shupei;Zhang, Xu-Xiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.141-148
    • /
    • 2017
  • The oxidation ditch (OD) is one of the most widely used processes for treating municipal wastewater. However, the microbial communities in the OD systems have not been well characterized, and little information about the shift of bacterial community during the startup process of the OD systems is available. In this study, we investigated the bacterial community changes during the startup period (over 100 days) of a full-scale OD. The results showed that the bacterial community dramatically changed during the startup period. Similar to the activated sludge samples in other studies, Proteobacteria (accounting for 26.3%-48.4%) was the most dominant bacterial phylum in the OD system, but its relative abundance declined nearly 40% during the startup process. It was also found that Planctomycetes proliferated greatly (from 4.79% to 13.5%) and finally replaced Bacteroidetes as the second abundant phylum in the OD system. Specifically, some bacteria affiliated with genus Flavobacterium exhibited remarkable decreasing trends, whereas bacterial species belonging to the OD1 candidate division and Saprospiraceae family were found to increase during the startup process. Despite of the bacterial community shift, the organic matter, nitrogen, and phosphorus in the effluent were always in low concentrations, suggesting the functional redundancy of the bacterial community. Moreover, by comparing with the bacterial community in other municipal wastewater treatment bioreactors, some potentially novel bacterial species were found to be present in the OD system. Collectively, this study improved our understandings of the bacterial community structure and microbial ecology during the startup of a full-scale wastewater treatment bioreactor.

Suggestions for Cost Improvement of High concentration Linked Treatment in Municipal Wastewater Treatment Plant (하수처리장에서의 연계처리수 요금 개선에 따른 경제성 분석)

  • Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.139-144
    • /
    • 2020
  • Recently, high-concentration linked wastewater has been introduced into a nearby municipal wastewater treatment plants(MWTPs), but it is difficult to MWTP in local governments due to an unreasonable linked treatment charge system, and there is insufficient evidence or data to prove this. However, the MWTP, which is a national essential infrastructure, is generally exempt from the preliminary feasibility study, so there have been no cases where economic evaluation was conducted. Therefore, we proposed an improvement plan that can compensate for the disadvantages of the existing linked processing charges through previous studies. In this study, a comparative evaluation of how much economic feasibility can be improved compared to the existing ones when applying the improvement plan by conducting an economic analysis. For this, reference was made to the preliminary feasibility assessment data of the existing environmental facilities and the cost factors and benefit factors established during the modernization of the old sewage treatment facilities. As a result of the study, the B/C(Benefit/cost) value was quite low in the past, but when the improvement proposal proposed by the researchers was applied, it was confirmed that the B/C value increased close to 1. Therefore, it is considered to be very reasonable to calculate the linkage processing charge according to the linked wastewater load proposed by the researchers.

Anaerobic Organic Wastewater Treatment and Energy Regeneration by Utilizing E-PFR System (E-PER 반응기를 이용한 유기성 폐기물의 혐기성 처리와 재생에너지 생산에 관한 연구)

  • Kim, Burmshik;Choi, Hong-Bok;Lee, Jae-Ki;Park, Joo Hyung;Ji, Duk Gi;Choi, Eun-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Wastewater containing strong organic matter is very difficult to treat by utilizing general sewage treatment plant. but the wastewater is adequate to generate biomass energy (bio-gas; methane gas) by utilizing anaerobic digestion. EcoDays Plug Flow Reactor (E-PFR), which was already proved as an excellent aerobic wastewater treatment reactor, was adapted for anaerobic food wastewater digestion. This research was performed to improve the efficiency of bio-gas production and to optimize anaerobic wastewater treatment system. Food wastewater from N food waste treatment plant was applied for the pilot scale experiments. The results indicated that the efficiency of anaerobic wastewater treatment and the volume of bio-gas were increased by applying E-PFR to anaerobic digestion. The structural characteristics of E-PFR can cause the high efficiency of anaerobic treatment processes. The unique structure of E-PFR is a diaphragm dividing vertical hydraulic multi-stages and the inversely protruded fluid transfer tubes on each diaphragm. The unique structure of E-PFR can make gas hold-up space at the top part of each stage in the reactor. Also, E-PFR can contain relatively high MLSS concentration in lower stage by vertical up-flow of wastewater. This hydraulic flow can cause high buffering capacity against shock load from the wastewater in the reactor, resulting in stable pH (7.0~8.0), relatively higher wastewater treatment efficiency, and larger volume of bio-gas generation. In addition, relatively longer solid retention time (SRT) in the reactor can increase organic matter degradation and bio-gas production efficiency. These characteristics in the reactor can be regarded as "ideal" anaerobic wastewater treatment conditions. Anaerobic wastewater treatment plant design factor can be assessed for having 70 % of methane gas content, and better bio-gas yielding and stable treatment efficiency based on the results of this research. For example, inner circulation with generated bio-gas in the reactor and better mixing conditions by improving fluid transfer tube structure can be used for achieving better bio-gas yielding efficiency. This research results can be used for acquiring better improved regenerated energy system.

  • PDF

A study on an intermittent aeration membrane bioreactor system using ammonia sensor to decrease energy consumption and sludge concentration by tubular membrane (암모니아 센서를 이용한 간헐폭기 Membrane bioreactor공정에서의 전력비 저감과 관형막을 이용한 슬러지 농축에 관한 연구)

  • Kang, Heeseok;Lee, Euijong;Kim, Hyungsoo;Jang, Am
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.161-170
    • /
    • 2014
  • It is essential to decrease energy consumption and excess sludge to economically operate sewage treatment plant. This becomes more important along with a ban on sea dumping and exhaustion of resource. Therefore, many researchers have been study on energy consumption reduction and strategies for minimization of excess sludge production from the activated sludge process. The aeration cost account for a high proportion of maintenance cost because sufficient air is necessary to keep nitrifying bacteria activity of which the oxygen affinity is inferior to that of heterotrophic bacteria. Also, additional costs are incurred to stabilize excess sludge and decrease the volume of sludge. There were anoxic, aerobic, membrane, deairation and concentration zone in this MBR process. Continuous aeration was provided to prevent membrane fouling in membrane zone and intermittent aeration was provided in aerobic zone through ammonia sensor. So, there was the minimum oxygen to remove $NH_4-N$ below limited quantity that could be eliminated in membrane zone. As the result of this control, energy consumption of aeration system declined by between 10.4 % and 19.1 %. Besides, we could maintain high MLSS concentration in concentration zone and this induced the microorganisms to be in starved condition. Consequentially, the amount of excess sludge decrease by about 15 %.

A Study on the Management and Utilization of Sub-Health Center in Rural area, Paraguay [1] - Focused on Limpio, Paraguay (파라과이 농촌지역 보건지소의 시설 관리 및 이용실태에 관한 연구[1] - 파라과이 림삐오시를 중심으로)

  • Kim, Ji Eon;Kim, Min Kyu;Nam, Eun Woo
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.26 no.2
    • /
    • pp.7-17
    • /
    • 2020
  • Purpose: The purpose of this study is to identify the operational status and current management of Sub-Health Centers in Limpio, Paraguay. Second, understanding the use of Sub-Health Centers and Perceptions of Sub-Health Centers in Limpio, Paraguay. Third, Providing policy implications for strengthening the Health Delivery System in Paraguay. Methods: The survey of the current status of sub-health centers in Limpio was conducted with observation and interview. Utilization of Sub-Health centers was analyzed in the 2018 Paraguay Community Health Survey. A face to face interview was conducted to complete a questionnaire and 831 samples were collected for the study. Results: In order to perform the normal function of the sub-health center, it will be necessary to allocate manpower that meets the standard. A common problem with sub-health centers in Limpio is that they have an environment vulnerable to rain. Currently, there are no health promotion and communicable disease management programs in sub-health center. Satisfaction of users about treatment, equipment, medicines and cleanleness of rooms. Implications: First, it is necessary to allocate human resources and organize spaces according to the standard. Second, there was a problem caused by moisture, and continuous maintenance and repair are required. Third, water and sewage related facilities must be safely improved to prevent contamination of groundwater. Forth, it is necessary to implement a program that fits the role of the sub-health center. Fifth, it is necessary to form a health delivery system considering the accessibility of residents. Finally, it is necessary to discuss the location of sub-health center considering travel time of Limpio residents.

Development of a Rotating Biological Contactor(RBC) Process for the Advanced Wastewater Treatment (회전원판(回轉圓板) 생물막(生物膜) 공법(工法)을 이용한 하(下)·폐수(廢水)의 고도처리(高度處理) 공정(工程) 개발(開發))

  • Kim, Eung Ho;Park, Jae Lo;Yoon, Jung Ro
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.2
    • /
    • pp.1-11
    • /
    • 1994
  • This study was conducted to develop a new RBC process available for the effective removal of organic matters and nitrogen in sewage. The RBC process for the oxidation organic compounds and nitrification was designed to occur at the 1st-stage and next-stage RBC respectively. Then nitrified water was recycled to the denitrifying RBC located at the lower part of the 1st-stage RBC. Some results were summarized as follows. 1. The loading limitation was represented as $60g{\cdot}COD/gm^2/day$ in experiment of simultaneous removal of organic matter and nitrogen. The maxmum COD % removal was 85% at the load $35g{\cdot}COD/m^2/day$. 2. The $NO_3-N$ % removal was approximately 80% at the load $60g{\cdot}COD/m^2/day$ and the maximum $NO_3-N$ remaval rate was $3.9g{\cdot}COD/m^2/day$ and the overall C/N ratio of 11.0 as required to achive 80% of $NO_3-N$% removal. 3.$NO_3-N$ removal rate was rapidly decreased above the load $7g{\cdot}NH_4{^+}-N/m^2/day$ and the maximum $NO_3-N$ removal rate was $3.7g{\cdot}NO_3-N/m^2/day$. 4. Irrespective of the recycle ratio, the COD % removal at the system of 2-stage RBC unit was nearly constant as 89% while the maximum one in the 1st-stage unit was 77% in the case of 50% recycle. 5. The maximum COD % removal in the 3-stage RBC system was 93% while 1st-stage one being 80%, under the $NH_4{^+}-N$ load of $7.4g/m^2{\cdot}d$. Also maximum percentage of nitrification and denitrification was 69% and 41% respectively, under the same $NH_4{^+}-N$ load.

  • PDF

Power density and fouling propensity of pretreatments in SWRO/PRO hybrid system (전처리기술별 전력밀도 및 파울링에 관한 연구)

  • Koo, Jae-Wuk;Nam, Sookhyun;Sim, Jinwoo;Kim, Eunju;Choi, Yongjun;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.755-764
    • /
    • 2016
  • Pressure retarded osmosis (PRO) processes can be implemented on a number of water types, using different technologies and achieving various power outcomes. In this study, Sewage facility effluent was used for feed solution of PRO and synthetic NaCl water for draw solution. This study was conducted to investigate effect of water quality of pretreatment on power density and flux decline in PRO process. The results show that organic and particulate foulants have to be removed for more stable operation. Flourescence technique with EEM enables to investigate the chemical properties of aquatic organic matter by extracting spectral information. Humic/fulvic matters and soluble microbial by-products were analyzed as the most affecting factors on the PRO performance. As a result of analyzing the whole system based on the energy consumption of the unit process, specific energy consumption(SEC) of the applicable technology for PRO pre-treatment should be about $0.2kWh/m^3$ or less.

Cause Analysis for Reduced Effect of Sewer Pipe Improvement Project Based On Investigation of Interceptor Sewers (차집관로의 조사 및 분석을 통한 하수관로정비 사업의 효과 감소 원인 분석)

  • Chae, Myungbyung;Bae, Younghye;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.219-226
    • /
    • 2018
  • Interceptor sewer is installed underground near to the river side mostly ofstate-owned land and the management efficiency of public sewage disposal facilities is decreasing as too much infiltration/inflow(I/I) and river flow to interceptor sewer are caused by broken or deteriorated sewer. This also affects the sewer pipeline project and decreases its efficiency. Therefore, the aim of this study is to investigate interceptor sewer which has influence on the reduction of the project effect. The investigation were performed for three study areas. The study includes the investigation of current condition of interceptor sewer(sewer extension, pipe diameter, pipe type, installed year, installed locations, etc), investigation of inside of sewer by CCTV accompanied by pumping and dredging works where required, investigation of inside of manholes by eyes, calculation of pollutant load using the results of investigation of flow quantity and quality. Multipoint investigations were simultaneously performed for flow quantity at confluence area and other investigations were also performed for flow quantity and BOD for interceptor sewer and comparison of pollutant load, investigation of infiltration/inflow(I/I) caused by deterioration of interceptor sewer. As the result of the study, a main reason for reduced effect of sewer pipe improvement project was analyzed as the low-density sewage and I/I in public seweage treatment Facility due to deteriorated and unmanaged interceptor sewers.

Lifecycle cost assessment of best management practices for diffuse pollution control in Han River Basin (한강수계 비점오염원 저감시설의 생애주기비용 평가)

  • Lee, Soyoung;Maniquiz-Redillas, Marla C.;Lee, Jeong Yong;Mun, Hyunsaing;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.448-455
    • /
    • 2016
  • Diffuse pollution management in Korea initiated by the Ministry of Environment (MOE) resulted to the construction of pilot facilities termed Best Management Practices (BMPs). Twelve BMPs installed for the diffuse pollution management in the Kyung-An Stream were monitored since 2006. Data on the mass loading, removal efficiency, maintenance activities, etc. were gathered and utilized to conduct the evaluation of long-term performance of BMPs. The financial data such as actual construction, design and maintenance cost were also collected to evaluate the lifecycle cost (LCC) of BMPs. In this study, most of the maintenance activity was focused in the aesthetic maintenance that resulted to the annual maintenance cost of the four BMP types was closely similar ranging from 8,483 $/yr for retention pond to 8,888 $/yr infiltration system. The highest LCC were observed in constructed wetland ($418,324) while vegetated system had the lowest LCC ($210,418). LCC of BMPs was not so high as compared with the conventional treatment facility and sewage treatment plant. On the other hand, the relationship of removal efficiency on unit cost for TSS and TN was significant. This study will be used to design the cost effective BMP for diffuse pollution management and become models for LCC analysis.