• Title/Summary/Keyword: Sewage treatment system

Search Result 372, Processing Time 0.023 seconds

Solid Fuel Carbonization Characteristics through Hydrothermal Carbonization of Sewage Sludge (하수슬러지의 수열탄화를 통한 고형연료 탄화 특성)

  • Seong Kuk Han;Moonil Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.53-61
    • /
    • 2023
  • Most of the sewage sludge is organic waste containing a large amount of organic substances decomposable by microorganisms by biological treatment. As for existing sewage sludge treatment methods, reduction and fuel conversion are being carried out using technologies such as drying, incineration, torrefaction, carbonization. However, the disadvantage of high energy consumption has been pointed out as latent heat of 539 kcal/kg is consumed based on drying. Therefore, in this study, we intend to produce solid fuel through hydrothermal carbonization(HTC), which is a thermochemical treatment. To evaluate the value of solid fuel, the characteristics of carbonization and fuel ratio were analyzed. As a result, as the hydrothermal carbonization reaction temperature increased, the lower heating value also increased by about 500 kcal/kg due to the increase in the degree of carbonization. H/C, O/C, ratio showed a decreasing trend from 1.78, 0.46 to 1.57, 0.32. When the ratio of ash to combustible content (fixed carbon + volatile) of dry sludge was 0.25 or more, it was derived that the degree of carbonization and calorific value did not increase even when hydrothermal carbonization was performed.

Hydraulic Shock of Apartment Sewage in Inverse Fluidized Bed Biofilm Reactor (역유동층 생물막 반응기에서 수리학적 충격에 따른 아파트 오수의 처리)

  • 박영식;나영수
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.17-24
    • /
    • 1997
  • The objective of this study was to examine the transient response to hydraulic shocks in an Inverse fluidized bed bioflm reactor(IFBBR) for the treatment of apartment sewage. The hydraulic shock experiments, when the system were reached at steady state with each HRT 12, 7, and 4hr, were conducted by chancing twice HRT per day during 3days. The SCOD, SS, DO, and pH of the effluent stream were increased with hydraulic shock, but easily recovered to the steady state of pre-hydraulic shock condition. In spite of hydraulic shock, there were not much variation of biomass concentration, biofilm thickness and biofilm dry density.

  • PDF

The Effect of the Use of Sodium Hypochlorite and Iron Salts on Sewage Sludge Dewaterability (차아염소산과 철염을 이용한 하수슬러지의 탈수효과)

  • Sung, Il-Wha
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.1
    • /
    • pp.58-63
    • /
    • 2009
  • This study investigated improvement to sludge dewaterability and coagulation for sewage treatment plant sludge by using sodium hypochlorite solution (NaOCl), ferric sulfate [$Fe_2(SO_4)_3$] and zeolite. The specific resistance to filtration(SRF), chloride, pH and turbidity were used to evaluate the sludge dewatering behaviors. The results of study were as follows: By varying the amount of NaOCl added the optimum result in terms of enhancement for pretreatment occurred when 34 mg/l of NaOCl was injected. When the total solids concentration of the sludge was 10,000 mg/l, the optimum ferric sulfate dosage for the sludge dewaterability was 150 mg/l and the corresponding SRF was $1.7{\times}10^7sec^2/g$. It was observed that injecting zeolite into sludge was effective in improving the dewaterability of sludge.

Evaluation of Operational Options of Wastewater Treatment Using EQPS Models (EQPS 모델을 이용한 하수처리장 운전 평가)

  • Yoo, Hosik;Ahn, Seyoung
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.401-408
    • /
    • 2018
  • EQPS (Effluent Quality Prediction System, Dynamita, France) was applied to analyze the appropriateness of the design of a bioreactor in A sewage treatment plant. A sewage treatment plant was designed by setting the design concentration of the secondary clarifier effluent to total nitrogen and total phosphorus, 10 mg/L and 1.8 mg/L, respectively, in order to comply with the target water quality at the level of the hydrophilic water. The retention time of the 4-stage BNR reactor was 9.6 hours, which was 0.5 for the pre-anoxic tank, 1.0 for the anaerobic tank, 2.9 for the anoxic tank, and 5.2 hours for the aerobic tank. As a result of the modeling of the winter season, the retention time of the anaerobic tank was increased by 0.2 hours in order to satisfy the target water quality of the hydrophilic water level. The default coefficients of the one step nitrification denitrification model proposed by the software manufacturer were used to exclude distortion of the modeling results. Since the process modeling generally presents optimal conditions, the retention time of the 4-stage BNR should be increased to 9.8 hours considering the bioreactor margin. The accurate use of process modeling in the design stage of the sewage treatment plant is a way to ensure the stability of the treatment performance and efficiency after construction of the sewage treatment plant.

Performance Characteristics and Improvement Suggestion of Individual Sewage Treatment in Kyangan Watershed (경안천 유역 소규모 오수처리시설의 처리특성 및 효율개선방안)

  • Jang, Young-ho;Kim, Keug Tae;Jahng, Deok-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.816-821
    • /
    • 2010
  • It has been achieved 109.1 kg/d of BOD reduction that is equivalent to the amount of BOD loading discharged from 21,880 persons and dramatic decrease of the fallout ratio against water quality of effluent, from 42% to 9%, through technical support on ISTPs to be applied by the ISMSGA at the upper area of Geongan river in Yong-In city. It was clearly revealed that the most efficient configuration for ISTP was a series of anaerobic tank, equalization basin, aerobic tank, sedimentation tank, and then effluent tank. Also, the major causes on the fallout ratio of ISTP resulted in the lack of management (67.5%) and imperfect facilities (32.5%). Then, when compared the quantity of water supply with the design capacity of ISTP, the design capacity was estimated as 1.8 or 2.4 folds larger than the real quantity of water supply so that it is essential to punctually consider the key factors such as an estimation methods, the specificity of commission operator and construction by high systematic technologies to improve the water quality for the future.

Study on the Relationship between Weather Conditions, Sewage and Operational Variables of WWTPs using Multivariate Statistical Methods (기상조건이 하수발생량 및 하수처리장 운전인자에 미치는 영향에 관한 통계적 분석)

  • Lee, Jae-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.285-291
    • /
    • 2012
  • Generally, the rainfall and the influent of wastewater treatment plants (WWTPs) have strong relationship at the case of combined sewers. With the fact that the influent variations in terms of quantity and sewage quality is the most common and significant disturbance, the impact factor to the characteristics of sewage should be searched for. In this paper, the relationship between weather conditions such as humidity, temperature and rainfall and influent flowrate and contaminant concentration was analysed using factor analysis. Additionally, 3 influent types were deduced using cluster analysis and the distributions of operational variables were compared to the each groups by one-way ANOVA. The applied dataset were clustered to three groups that have the similar weather and influent conditions. These different conditions can cause the different operating conditions at WWTPs. That is, the Group 1 is for the condition with high humidity and rainfall, so DO concentration in the reactor was very high but MLSS concentration was very low because of too large flowrate. However, the Group 3 is classified to the case having low humidity, temperature, and rainfall, therefore, the SRT was the longest and the SVI was the highest due to the worst settleability in the winter for a year.

Characteristics of Microfauna in Biological Treatment of Landfil Leachate with Reactor Including Porous Media (다공성 Media가 조여된 반응조를 이용한 매립지 침출수의 호기성 생물학적 처리시 미소생물상의 특성)

  • 홍성철;박연규
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.61-69
    • /
    • 1996
  • The combined wastewater of municipal landfill leachate and municipal sewage was treated using several sets of bench-scale aerated circulating system including porous media. Investigated items in this experiment were the dominant protozoa and metazoa in this system, the variation of microfauna relationship between operating condition and dominant genera. Also considered the factors determining dominant genera and their role. The outcome of this research is as follows; 1. Aspidisca, Vorticella, Truhellophyllum, Lecane, Philodina, Cyclops were mainly appeared prior to combinding leachate, while Trachelocerca, Bodo, Glaucoma were the dominant genera after combinding leachate. 2. As to metazoa, Nematode and Philodina were not influenced by 5oA leachate mixing ratio, meanwhile Crustacea has high sensitivity for increased leachate mixing ratio and it was not appeared in 5% leachate mixing ratio. 3. The appropriate treatability could'nt be expected at the above 10% leachate mixing ratio. Especially, in the condition of 20% leachate mixing ratio, all of the microfauna were affected damage seriously on their existence. Meanwhile hydraulic retention time, substrate loading rate and slut자e production rate didn't give notable influence on increasing the number of microfauna. 4. As to protozoa, saprozoic and holozoic species were appeared commonly and polysaprobic species were dominent. 5. Filamentous organsms were nearly not affected by leachate mixing. It seems that they could live without any trouble at the 10% leachate mixing ratio, if the substrate is sufficient. 6. Diversity of microfauna had a reducing trernd as the sewage was mixed with leachate.

  • PDF

The Dissolution Characteristics of Metal Compounds in Soil Application Experiment using Sewage Treatment Sludge mixed with Oyster shells (하수슬러지 및 굴껍질의 토지주입시 금속성분의 용출특성에 관한 연구)

  • Kim, Chul;Moon, Jong-Ik;Shin, Nam-Cheol;Ha, Sang-An;Sung, Nak-Chang;Huh, Mock
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.2
    • /
    • pp.71-76
    • /
    • 2001
  • Recently, sludge disposal becomes one of the most serious environmental problems. Because the landfilling and ocean dumping of sludge materials will be prohibited in the near future, the proper treatment?disposal methods should be investigated. Also, oyster shells, piled at the coast, cause adverse effects in coastal fishery, public water surface, natural landscape, public health and so on. Thus, the purpose of this study is to evaluate the dissolution characteristic of metal compounds during soil application experiment using sewage treatment sludge mixed with oyster shells. The dissolution experiment conducted 100days under artificial rainfall and farming soil, mixed with sewage treatment sludge and oyster shells, was put into the pots(approx. 0.5L). The results from dissolution experiment as follows. 1. K, Na was $5{\sim}20mg/{\ell}$, and Ca was less than $90mg/{\ell}$. 2. Heavy metals such as Cd, Cu, As, Pb, Cr, Hg are dissoluted far less than the soil pollution guideline. The application of sewage sludge mixed with oyster shells increases pH(soil acidity)and buffer capacity(CEC) of farming soil, and heavy metals are thought to be attached to soil as insoluble forms.

  • PDF

Pulsed-Power System for Leachate Treatment Applications

  • Jang, Sung-Roc;Ryoo, Hong-Je;Ok, Seung-Bok
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.612-619
    • /
    • 2011
  • This paper presents a water treatment system for leachate from sewage-filled ground that uses a pulsed-power modulator developed based on semiconductor switches in order to realize a long life, a high repetition rate, and a fast rising time. The specifications of the developed pulsed-power modulator are the pulsed output voltage, the output current, the pulse repetition rate (PRR), the pulse width, and an average output power of $60\;kV_{max}$, $300\;A_{max}$, 3000, $50\;{\mu}s$, and 15 kW, respectively. The pulsed-power water treatment system was introduced and analyzed using an equivalent electrical circuit model to optimize the output voltage waveform. The experimental results verify that the proposed water treatment system can be effectively used for industrial applications.