• Title/Summary/Keyword: Sewage sludge char

Search Result 15, Processing Time 0.023 seconds

Microwave-enhanced gasification of sewage sludge waste

  • Chun, Young Nam;Song, Hee Gaen
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.591-599
    • /
    • 2019
  • To convert sewage sludge to energy, drying-gasification characteristics during microwave heating were studied. During the gasification of carbon dioxide, the main products were gas, followed by char, and tar in terms of the amount. The main components of the producer gas were carbon monoxide and hydrogen including a small amount of methane and light hydrocarbons. They showed a sufficient heating value as a fuel. The generated tar is gravimetric tar, which is total tar. As light tars, benzene (light aromatic tar) was a major light tar. Naphthalene, anthracene, and pyrene (light polycyclic aromatic hydrocarbon tars) were also generated, but in relatively small amounts. Ammonia and hydrogen cyanide (precursor for NOx) were generated from thermal decomposition of tar containing protein and nitrogen in sewage sludge. In the case of sludge char, its average pore diameter was small, but specific area, pore volume, and adsorption amounts were relatively large, resulting in superior adsorption characteristics.

Fuel Characteristics of Sewage Sludge in a Fluidized Bed Incinerator (유동상 소각로에서 하수 슬러지 연료 특성)

  • Choi, Jin-Hwan;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.81-91
    • /
    • 1999
  • Fuel characteristics of sewage sludge as required for the fluidized bed incinerators have been evaluated. Sewage sludge is basically a solid fuel with high percentage of moisture. Moisture content of the fuel directly affects the heating value of the fuel and the exhaust gas composition. When the sludge of transported into the incinerator, sludge cake is subject to the mixing, break-up and heat-up. Fluidization process would enhance these physical processes. The sludge fuel could then undergo the moisture evaporation and devolatilization process. Subsequent oxidation of volatiles as well as the remaining char would then follow. Sludge samples are characterized with high percentage of volatiles out of total combustibles. Quantitative understanding of above listed subprocesses would certainly help in the utilization of fluidized bed incinerators. A limited set of fuel characterization tests including calorimetric analysis, proximate analysis, elemental analysis and thermogravimetric analysis were conducted for the selected sludge samples. The measurement reasults of sludge samples were reported along with some published data. Limited experience in the actual incinerator plant is also presented.

  • PDF

Characteristics of Carbon Dioxide Gasification for Sewage Sludge in Microwave (마이크로웨이브에 의한 하수 슬러지 이산화탄소 가스화 특성)

  • JEONG, BYEORI;YOON, SOOHYUK;CHUN, YOUNGNAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.192-200
    • /
    • 2016
  • A characteristics of microwave drying-gasification was analyzed for converting a dewatered sewage sludge generated a wastewater treatment plant. Gas (60%) was the largest component of the product of microwave gasification, followed by sludge char (33%) and tar (2%). The main components of the producer gas were hydrogen (33%) and carbon monoxide (40%), and there was some methane and hydrocarbons ($C_2H_4$, $C_2H_6$, $C_3H_8$). Larger nitrogen and smaller oxygen amounts were generated. Gravimetric tar generated $414g/m^3$. This means a total tar which is a heavy hydrocarbons from the volatile organic substance in the sewage sludge. Selected light tars were benzene, anthracene, naphthalene, pyrene, showing lower concentrations as 2.62, 0.37, 0.49, $0.28g/m^3$, respectively. Sludge char has larger meso pores which is a mean pore size of $50.85{\AA}$ and has high adsorptivity. An amount of adsorption was $228.71cm^3/g$, showing higher quantity than acommercial adsorbers. This indicates that the gas obtained from the microwave gasification of wet sewage sludge can be used as fuel, but the heavy tar in the gas must be treated. Sludge char can be used as a tar reduction adsorbent in the process, and then burns as a solid fuel.

A Study on the Development of Activated Carbons from Sewage Sludge (하수슬러지를 이용한 활성탄 개발에 관한 연구)

  • Lee, Taek-Ryong;Chung, Chan-Kyo;Joe, Young-Cheon
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.31-37
    • /
    • 2009
  • This study deals with the production process of activated carbons from the sewage sludge char by chemical activation reaction. KOH and NaOH were used as activating agents, which react well with carbon. From the experiments, it was found that activated carbons made with KOH treatment had better physicochemical properties in terms of iodine number and BET value than those made with NaOH treatment. It was also found that the optimal deposition ratio of an activating agent to the sewage sludge char was 75 wt% of KOH and 50 wt% of NaOH. Activated carbons were washed out by distilled water after neutralization with 5 M hydrochloric acid solution. The activated carbons that were produced from a sewage sludge char at this optimal conditions have BET surface areas of approximately $600m^2/g$.

Reaction Mechanism of Low Temperature NH3 SCR over MnOx/Sewage Sludge Char (MnOx/Sewage Sludge Char를 이용한 저온 NH3 SCR의 반응 메커니즘)

  • Cha, Jin-Sun;Park, Young-Kwon;Park, Sung Hoon;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.308-311
    • /
    • 2011
  • The reaction mechanism of selective catalytic reduction of NOx over sewage sludge char impregnated with MnOx using $NH_3$ as the reducing agent was investigated. The active Mn phase was shown to be $Mn_3O_4$ from the XRD analysis. Adsorption was the dominant NOx removal mechanism at low temperatures below $150^{\circ}C$ although reduction reaction also contributed partly to the NOx removal at $100{\sim}150^{\circ}C$. The reaction rate constants of NOx removal over non-impregnated and MnOx-impregnated active chars were compared based on experimental results. The MnOx-impregnated char was shown to have a higher reaction rate constant and a higher NOx removal efficiency due to a higher collision coefficient and a lower activation energy. The activation energy for both chars was shown to be relatively low (10~12 kJ/mol) under the experimental conditions of this study.

Production of Biofuel Energy by High Temperature Pyrolysis of Sewage Sludge Using Microwave Heating (마이크로웨이브 가열 하수 슬러지 고온 열분해에 의한 바이오 연료 에너지 생산)

  • Jeong, Byeo Ri;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.34-39
    • /
    • 2017
  • The recent gradual increase in the energy demand is mostly met by fossil fuel, but the research on and development of new alternative energy sources is drawing much attention due to the limited fossil fuel supply and the greenhouse gas problem. This paper assesses the feasibility of producing fuel energy from a dewatered sewage sludge by microwave-induced pyrolysis with sludge char and graphite receptor. Both receptors produced gas, char, and tar in order from product amount. The gas produced for the sludge char receptor contained mainly hydrogen and methane with a small amount of light hydrocarbons. The graphite receptor generated higher gravimetric tar and generated higher light tar. Through the results, the product gas from the microwave processes of wet sewage sludge might be possible as a fuel energy. But the product gas has to be removed the condensable PAH tars.

Effect of Reaction Conditions of Pyrolysis on the Characteristics of Sludge Char (열분해 조건에 따른 슬러지 Char 특성 변화)

  • Cha, Jin-Sun;Park, Young-Kwon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.851-856
    • /
    • 2011
  • In this study, char was produced via pyrolysis of sewage sludge and the effects of reaction conditions(temperature, heating rate, reaction time) on characteristics of char were investigated. As temperature increased from $300^{\circ}C$ to $800^{\circ}C$, the surface area of sludge char increased in general but decreased at $700^{\circ}C$ temporarily. The effect of heating rate on specific surface area and pore volume of char was not large. Meanwhile, specific surface area and pore volume increased with reaction time but average pore diameter decreased.

Pyrolysis and combustion characteristics of dried sewage sludge in a fixed bed reactor (건조 하수 슬러지의 열분해 및 고정층 연소 특성 연구)

  • Kim, Minsu;Lee, Yongwoon;Park, Jinje;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.29-32
    • /
    • 2014
  • The practical route for disposal of sewage sludge becomes energy recovery by combustion after its ocean dumping is banned in 2012 in Korea. Due to the high moisture content, however, sewage sludge is required to be dried before transport and combustion. In this study, pyrolysis and combustion characteristics of dried sewage sludge was investigated in a small-scale fixed bed reactor in order to provide fundamental data for energy recovery of the fuel. As the first step of combustion, the primary products of pyrolysis were analyzed in a fixed bed reactor for the condensable volatiles (tar), non-condensable gases, and char. For the combustion characteristics, another fixed bed reactor was constructed to monitor the weight and temperature of the fuel particles during ignition and combustion under different air flow rates. The test results were used to derive the ignition and burning rates.

  • PDF

A Kinetic Studies of Pyrolysis and Combustion of Sewage Sludge (하수 슬러지의 열분해 및 연소 Kinetics 연구)

  • Roh, Seon Ah
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.47-53
    • /
    • 2014
  • Effective treatment and energy conversion technologies are necessary due to the ban of the dumping of organic waste including the sewage sludge. In this study, the kinetics of pyrolysis and combustion were derived in a TGA and thermobalance reactor, which is essential for thermal conversion of sewage sludge to energy. Three steps are shown for the pyrolysis in TGA and the different pre-exponential factors and activation energies are derived depending on the temperature range. Three models of gassolid reaction were applied to the reaction kinetics analysis for the combustion of sewage sludge char and shrinking core model was an appropriated model. Apparent activation energy and pre-exponential factor were evaluated and the effect of oxygen partial pressure was examined.

Study on Kinetics and Syngas Production of Sewage Sludge Gasification (하수슬러지 가스화의 kinetics 및 합성가스 생산 연구)

  • Roh, Seon Ah
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.3-8
    • /
    • 2015
  • Gasification characteristics and gas produced from a sewage sludge char were analyzed by using a thermobalance reactor, which is used for a reaction kinetic analysis by measuring weight change of materials at a desired temperature. Gasification reaction rate increased with increasing temperature and steam partial pressure due to the promotion of gasification reaction. Three models of gas-solid reaction were applied to the reaction kinetics analysis and modified volumetric reaction model was an appropriated model for the steam gasification of the sewage sludge char. Apparent activation energy and pre-exponential factors were evaluated as 155.5 kJ/mol and $14,087s^{-1}atm^{-1}$, respectively. The order of reaction on steam partial pressure was 0.68. Gas analysis was performed at $900^{\circ}C$ and hydrogen concentration was highest in the gas concentrations, which increased with increasing the steam partial pressure. Hydrogen concentration increased the most and hydrogen concentration in the produced gas was 2-4 times higher than that of carbon monoxide due to the gasification and water gas shift reaction.