• Title, Summary, Keyword: Sewage pipeline

Search Result 21, Processing Time 0.04 seconds

A Numerical Study on Safety Evaluation of Prefabricated Sewage-Pipe Plastic Foundation Based on Pipe Diameters and Buried Soil Depths (하수관거 직경과 심도를 고려한 하수관거 플라스틱 받침기초의 안전성 평가를 위한 해석연구)

  • Park, Rae-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4322-4327
    • /
    • 2015
  • Improper backfill materials and compaction controls under pipelines have become one of the major causes of failure in many sewage pipeline systems. A study on backfill materials and compaction controls has been considered for a long time. However, structural supporters under the pipe were recently concerned because of pipeline repair and maintenance. This paper presents a prefabricated plastic foundation for supporting a sewage pipe system and increasing the performance function of the pipes. Several analytical models for the plastic foundations were investigated using finite-element program, ABAQUS, for checking safety. Comparing with the results of analyses, some of economic design sections based on the sizes of pipe diameters, 600mm, 700 and 600mm, were evaluated. These results could be applied to a pipeline system with a prefabricated plastic foundation with respect to pipe diameters and buried depths.

A Study on Efficient Operation Management of Small-Scale Sewage Treatment Plants in Gyeongnam (경남지역 소규모하수처리시설의 효율적 운전관리방안 연구)

  • Park, Sung-Hwan;Moon, Sung-Yong
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.15-27
    • /
    • 2017
  • In this study, It is to identify matter through the analysis of small-scale sewage treatment plant operations in Gyeongsangnam-do and relatively weak state facilities in winter. And It is suggested to appropriate management method at sewage treatment facilities. First, small scale sewage treatment plant treatment method is very divers. The selection of treatment method has not been made by appropriate standard. second, there are many problems that have been raised consistently such as inappropriate facilities operating ratio, sewage inflow of low concentration(less than BOD 100mg/L), inflow sewage low temperature(in winter) and inflow unknown water by uninstalled joints. Third, 12 facilities small-scale sewage treatment facilities the excess of effluent total nitrogen water quality standards(enhanced water quality in winter). Therefore, this study suggested that nitrogen and phosphate treatment efficiency improves when unification of sewage system, sealing of treatment facilities, maintenance of sewage treatment facilities pipeline and installed advanced process like total phosphate facilities.

Colonization of Microbial Biofilms in Pipeline of Water Reuse

  • Kumjaroen, Teratchara;Chiemchaisri, Wilai;Chiemchaisri, Chart
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.275-281
    • /
    • 2014
  • Aim of this study was to investigate biofilms attached in pipeline of water reuse from the MBR system treating sewage without chlorination in correlation to the outflow water quality. Two general pipe materials: polyvinyl chloride (PVC) and polyethylene (PE) were employed in the experiment. The peak growths were found at week 4 in both pipes. The maximum biofilms in PE pipe was $33mgVSS/cm^2$ with the growth rate of $4.75mgVSS/cm^2-d$ which was significant higher than that of PVC pipe. Biofilms examined by PCR-DGGE technique revealed five bacterial species in PE biofilms namely Sinorhizobium medicae WSM419, Sinorhizobium fredii NGR234, Geobacter sp. M18, Parachlamydia acanthamoebae UV-7, and Mycobacterium chubuense NBB4. The VSS concentrations in outflow had directly correlated to the biofilm attachment and detachment. High COD concentrations of outflow appeared during biofilm detaching phase. In summary, water quality of reuse water corresponded to the biofilms attachment and detachment in the pipeline.

Groundwater Recharge and Discharge in the Urban-rural Composite Area (도농복합지역 지하수 함양과 배출에 대한 연구)

  • Lee, Byung-Sun;Hong, Sung-Woo;Kang, Hee-Jun;Lee, Ji-Seong;Yun, Seong-Taek;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.37-46
    • /
    • 2012
  • This study was conducted to identify groundwater recharge and discharge amounts of a representative urban-rural composite area located in Yongin city, Kyounggi-do, Korea. Groundwater recharge would be affected by mainly two processes in the study area: rainfall and leakage from public water pipelines including water-supply and sewage system. Groundwater recharge rate was estimated to be 13.5% by applying annual groundwater level data from two National Groundwater Monitoring Stations to the master regression curve method. Subsequently, the recharge amounts were determined to be $13,253{\times}10^3m^3/yr$. Leakage amounts from water-supply and sewage system were estimated to be $3,218{\times}10^3$ and $5,696{\times}10^3m^3/yr$, respectively. On the whole, a total of the recharge amounts was $22,167{\times}10^3m^3/yr$, of which 60% covers rainfall recharge and 40% pipeline leakage. Groundwater discharge occurred through three processes in the composite area: baseflow, well pumping, and discharge from urban infrastructure including groundwater infiltration into sewage pipeline and artificial extraction of groundwater to protect underground facilities from submergence. Discharge amounts by baseflow flowing to the Kiheung agricultural reservoir and well pumping were estimated to be $382{\times}10^3$ and $1,323{\times}10^3m^3/yr$, respectively. Occurrence of groundwater infiltration into sewage pipeline was rarely identified. Groundwater extraction amounts from the Bundang subway line as an underground facility were identified as $714{\times}10^3m^3/yr$. Overall, a total of the discharge amounts was determined to be $2,419{\times}10^3m^3/yr$, which was contributed by 29% of artificial discharge. Even though groundwater budget of the composite area was identified to be a surplus, it should be managed for a sound groundwater environment by changing deteriorated pipelines and controlling artificial discharge amounts.

A Study on the Improvement Methods for Water Supply Facility Management System Implementation by GIS (GIS 기반 상수도 관망관리시스템 구축의 개선 방안에 관한 연구)

  • Yeon, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.3
    • /
    • pp.90-97
    • /
    • 2000
  • The study was aimed to extract the improvement measures for the problem on GIS application GIS for water supply and sewerage pipeline facility management in the Jechon city. For this, it performed of analysis of their working and modeling with other relational contents of the water and sewer facility management. As the results, the implementation of water and sewer facility management system by use of GIS has to applying development through relational analysis not only pipeline facility and leaking water protection, pipeline network analysis but also digital topography, drawing data, water user's information.

  • PDF

Laboratory Loading Test of Light-Weight Prefabricated Plastic Foundation for Sewage Pipe Line (하수관거용 플라스틱 조립식 경량기초의 하중재하실험)

  • Lee, Dong-Hang;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2757-2762
    • /
    • 2012
  • Sewage pipelines are one of important infra-structures. The main reasons of sewage pipelint failure are improper backfill materials and compaction controls in field. Especially, it is very difficult to compact the lower part of circula pipelines. In order to overcome these problems, the prefabricated light-weight plastic foundation was developed. Couple of load-displacement tests were carried out to get the characteristic of failure. From the limited laboratory loading tests, the use of prefabricated light-weight plastic foundation is an alternative to solve the difficulty of backfill materials and compaction control.

A Proposal of Distribution Method for Inter-Regional Sewage Treatement Zone Using GIS and Gravity Model (GIS와 중력모형을 이용한 광역 하수처리권역 설정)

  • 하성룡;박대희
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • /
    • pp.20-25
    • /
    • 1998
  • In order to support effective decision-making related to inter-sewage planning, this study proposes the spatial distribution method of inter-sewage treatement area using spatial analysis of GIS, Communication system of database, spatial interaction of Gravity model. Evalution Indexs are consist of economic, social/political and environmental condition value which are explained by the analysis of AHP algorithm ,based on opinion of related experts. Network module in Arc/Info is applied in order to find out minimum pipeline root in Miho river watershed, one of the sub-basin of Geum river basin. This value also is utilized for the construction of cost decay function in gravity model.

  • PDF

A Study on Building Sewerage Data using Dynamic Segmentation Method (Dynamic Segmentation을 이용한 오수 관거 데이터구축에 관한 연구)

  • Park, Jeong-Wo;Yun, Jeong-Mi;Lee, Sung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.11-19
    • /
    • 2006
  • Sewerage is the system that improves the quality of human life and prevents many disasters such as floods. However the investigators in Korea only have been concerned about the sewer system, so the sewage treatment plant stays in the basic level like mapping. For example, only one attribute can be recognized in the linear object. Because of this limitation, it makes difficult to manage the linear attribute regarding to the sewage pipe plan. And it is impossible to control a partial (point type, line type) attribute changes of the linear object. We will therefore present the applicable method for the attribute changes of the linear object like the sewage pipe plans. For this reason, this paper is designed on the basis of Dynamic Segmentation(DS). DS has the advantage of giving the attribute value to the exact place in the linear object. As a result of using DS, the variety environment changes around the sewage pipes are applied to the building sewerage data. This also makes it possible to get a precise estimation for the maximum dirty water amount.

  • PDF

Analytical Evaluation of Influent Depending on the Occurrence of Rainfall by Case Study of Wastewater Treatment Facility (하수처리시설 사례 별 강우발생 유무에 따른 유입수 분석 평가)

  • Choi, Langkyu;Chung, Jin Do
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.3
    • /
    • pp.35-49
    • /
    • 2019
  • Currently in 2018, Korea has over 600 operating sewage disposal facilities. The law requires a sewage treatment plant to treat 500 tons or more of water per day, and a small-decentralized sewage treatment facility in a community to treat 50 tons or more to less than 500 tons of water per day. However, most facilities fulfill neither the quantity nor the quality requirements from the original design for such reasons as inflow of rainwater and ground water due to deterioration of pipelines and unauthorized input of wastewater in the pipelines. The research has selected 2 representative cases among the technical diagnosif sewage pipelines in many regions within the country to use it as the baseline of: hourly flowrate and BOD water quality analysis in both clear and rainy days, proper plant operation through inflow rate and ratio calculation, and diagnostic evaluation for deterioration of the pipelines and their accessary structures. This also suggests facilities that treats 500 tons or more of inflow per day to sample and analyze the water hourly for 24 hours once a week in both clear weather and rainy weather considering the influence of rainfall on a regular basis.

The Development of Cleaning and Monitoring System for Pipeline Type UV Sterilizer (관로형 UV 소독기를 위한 세척 및 모니터링 시스템 개발)

  • Park, Byeung-Jun;Ryu, Ji-Hyoung;Park, Jae-Byung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6434-6440
    • /
    • 2013
  • In this paper, an integrated control system is proposed for automatic control and remote monitoring of pipeline type UV sterilizer. The proposed system can control the cleaning wiper in the sterilizer with various cleaning motions, and periodically check the contamination level of the UV lamps with the UV power sensors. Therefore, sterilizer repair and maintenance can be more effectively done. In addition, the control system based on the open-source processor can communicate with external smart devices via Bluetooth, and thus wirelessly exchange control commands and sensor data. Furthermore, the system is able to flexibly cope with changes of cleaning motions and sensors since its firmware can be wirelessly upgraded by using the smart device. Consequently, the proposed system is suitable to construct a smart sewage treatment system in small towns.