• Title/Summary/Keyword: Sewage Treatment Plants

Search Result 306, Processing Time 0.029 seconds

Performance Analysis of 10kW Class Propeller Hydro Turbine by the Change of Flow Rates and the Number of Runner Vane Using CFD (CFD를 이용한 10kW급 모델 실험용 프로펠러 수차의 유량 및 러너 베인 깃 수 변화에 따른 성능해석)

  • Park, Ji-Hoon;Kim, You-Taek;Cho, Yong;Kim, Byeong-Kon;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.5-11
    • /
    • 2014
  • Small hydro power, among other renewable energy resources, has been evaluated to have enough development value because it is a clean, renewable and abundant energy resource. In addition, small hydro power has the advantage of low cost development by using existing facilities like sewage treatment plants, water works and similar resources. But in the case of small hydro power systems, there are problems with degraded operation efficiency of turbine due to changes in flow rates. In order to overcome this, variable speed control can be achieved by using the power rectifier and permanent magnetic synchronous generator(PMSG) as a possible method to respond to the changes in flow rates. In this study, a commercial ANSYS CFD code was used to analyze the performance of 10kW class propeller hydro turbine and to also investigate flow characteristics at variable flow rates and runner vane.

Development and Application of Modified Intermittently Aeration mode for Advanced Phase Isolation Ditch (APID) process at Winter Season (APID공정 내 동절기 개량형 간헐포기 운전모드 적용 및 개발)

  • Kwak, Sung-Keun;An, Sang-Woo;Chung, Mu-Keun;Park, Jae-Ro;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.872-878
    • /
    • 2009
  • Advanced Phase Isolation Ditch (APID) process was studied to develop economic retrofitting technology, for the plants where retrofitting of common activated sludge process is required. In this study, to develop and apply the modified intermittently aeration mode as process control conditions for treating municipal wastewater, a demonstration plant was installed and operated in the existing sewage treatment plant of P city. During this study, the average effluent $BOD_5$, SS, T-N, and T-P concentrations were 6.3, 4.5, 10.0, and 1.3 mg/L. The modified mode decreased the nitrification capability more than the conventional mode in the application period. Nitrate in the anaerobic condition can have a negative effect on biological phosphorus removal. In the decreasing nitrate levels, the modified mode increased the biological ability of removal phosphorus more than the conventional mode in this study. Therefore, newly developed APID process with modified intermittent aeration mode can be one of the useful processes for stable organic matter and nutrients removal.

Development and Application of Two Dimensional Water Quality Model on the Downstream of Han River (한강하류뷰에서의 2차원 수질모형의 개발 및 적용)

  • Han, Geon-Yeon;Lee, Eul-Rae
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.3
    • /
    • pp.261-274
    • /
    • 2002
  • The purpose of this study was to develop two dimensional contaminant transport numerical model by finite element method. The developed model system was tested for water quality analysis when contaminants from tributaries and sewage treatment Plants flow into the main river. In this study, the model was to perform calibration for reasonable parameter production and verification for reliability and accuracy. And, the proposed model was applied on the downstream of Han river using calibrated parameters. These results represented real con taminant distribution profile along the channel, and produced the good agreement in comparing calculated vague with measured value.

Preparation of Composites using Carbonyl Iron with Ferromagnetic Properties for Effective Phosphorus Removal in Water (효과적인 수중의 인제거를 위해 강자성력을 가진 카보닐 철을 활용한 복합제 제조)

  • Kim, Jong Kyu
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.117-124
    • /
    • 2018
  • For the effective removal of phosphorus in water, a novel type of composite was prepared by combining Poly Alumiun Chloride, widely used in sewage/wastewater treatment plants, and Humic Acid particles, which are known to have phosphorus removal ability, with CI. The surface of the ferromagnetic CI particles was oxidized and activated, and then PAC and HA were synthesized to finally produce CIPAC and CIHA. CIPAC and CIHA prepared by this study showed similar results to the phosphorus removal efficiencies of PAC and HA coagulants. The novel composite has a larger weight than the conventional coagulant, and the coagulated sludge precipitates rapidly. The sludge could be easily separated in a short time if the external magnetic field was given by the ferromagnetic force of CIPAC and CIHA prepared with CI as support. Therefore, it can be concluded that if phosphorus removal is carried out using CIPAC and CIHA prepared through this study with external magnetic field, the sedimentation rate will be much faster than that of conventional coagulant. Thus it is possible to obtain a high economic benefit in the sludge recovery part.

Change in Water Quality and Phytoplankton of Gwangju Stream due to Water Input from Lake Juam (주암호 용수 유입에 의한 영산강 지류 광주천의 수질 및 식물플랑크톤 변화)

  • Jeong, Byungkwan;Kim, Sehee;Shin, Yongsik
    • Journal of Environmental Science International
    • /
    • v.31 no.5
    • /
    • pp.431-445
    • /
    • 2022
  • The Gwangju Stream is a major tributary of the Yeongsan River. To maintain environmental and ecological functions in the stream, the flow is secured by natural water from the Mudeung Mountain as well as waters discharged from Lake Juam and the Gwangju sewage treatment plants. A substantial amount of water is supplied into the upper reaches of Gwangju Stream from Lake Juam. To examine the ecological effects of the water input from Lake Juam on the Gwangju Stream, a field survey of phytoplankton community species and an evaluation of water properties was conducted at five stations, from station GJ1 before the inflow to station GJ5 in the lower region. Nutrient levels decreased in the vicinity of the Lake Juam inflow, suggesting that this water inflow can contribute to the reduction of eutrophication in the stream. The phytoplankton community was mainly composed of Bacillariophyceae, Chlorophyceae, and Cyanophyceae, and the community structure was similar to that of the other study sites located near the water inflow regions. The inflow of water from Lake Juam can affect water quality and the phytoplankton community over a limited area, reducing eutrophication and increasing water flow in the Gwangju Stream.

A Management Plan of Wastewater Sludge to Reduce the Exposure of Microplastics to the Ecosystem (미세플라스틱의 환경노출을 최소화하기 위한 하·폐수 슬러지 관리방안)

  • An, Junyeong;Lee, Byung Kwon;Jeon, Byong-Hun;Ji, Min-Kyu
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Due to the negative impacts of microplastics (MPs) on the ecosystem, the investigation of its occurrence and its treatment from sewage and wastewater treatment plants (WWTPs) have received a lot of attention in the recent years. Most MPs are precipitated and removed with the sludge during the treatment process. Proper sludge management is immensely necessary to avoid MP exposure in the environment. However, the domestic research on this aspect is limited. This study reviews appropriate sludge management approaches to decrease environmental MP exposure. This can be achieved through investigating sludge generation and treatment, regulation laws and government policy trends with an emphasis on WWTPs. The ratio of sludge in sewage treatment plants has been observed to be highest in recycling followed by incineration and landfills. Recycling is the highest in fuel followed by construction materials and composting. For WWTPs, the highest ratio is in recycling followed by fuel and landfills, and recycling is confirmed in the following order: incineration > after composting > after solidification > earthworm breeding. Treatment approaches that can increase the exposure of MPs to the ecosystem are considered to be used in landfills and agricultural fields. However, this method is not appropriate given the insufficient capacity of domestic landfills and the sufficient supply of existing chemical and animal manure fertilizers. Instead, it would be rational in terms of environmental preservation to expand the use of fuel and energy in connection with the new and renewable energy policy, and to actively seek the use of sub-materials for construction materials. In order to secure the basic data for the effectiveness of future planning and revision of related laws, it is required to perform an in-depth investigation of the sludge supply and demand status along with the environmental and economic effects.

Emission Characteristics of Odor Compounds from Fundamental Environmental Facilities in an Industrial Complex Area in Daegu City (대구시 산업단지 환경기초시설의 악취발생 특성)

  • Lee, Chan-Hyung;Jeon, Hyun-Sook;Shin, Myung-Cheol;Kim, Eun-Deok;Jang, Yun-Jae;Kwon, Byoung-Youne;Song, Hee-Bong
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.4
    • /
    • pp.246-254
    • /
    • 2016
  • Objectives: This study evaluated the odor emission characteristics from fundamental environmental facilities at an industrial complex area in Daegu City. Methods: The odor samples were collected from May 2015 to January 2016 and were analyzed for specified offensive odor substances. The odor quotient and the odor contribution was calculated. Results: Ammonia was detected in all samples monitoring specified odor compounds, followed by hydrogen sulfide and acetaldehyde. According to contribution analysis, hydrogen sulfide shows the highest contribution in all facilities. At wastewater treatment plants A and B and sewage treatment plant F, it was followed by acetaldehyde. At wastewater treatment plant C, it was followed by imethyl sulfide. Conclusion: The major component of odor can be determined by evaluating the degree of contribution to the odor intensity rather than the concentration of the individual odor components. To increase the effectiveness of odor reduction, policies focused on materials with a high odor contribution are needed rather than focusing on high-concentration odor compounds.

Advanced Wastewater Treatment Using Biofilter System with Floating Media under Alternative Flow (유로변경식 부상여재 생물여과시스템을 이용한 하수고도처리)

  • Ryu, Hong-Duck;Lee, Jeong-Hun;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.250-257
    • /
    • 2006
  • The objective of this study is to propose an alternative process for the small sewage treatment plants in rural communities. A biofilter has been used for biological wastewater treatment, which is becoming the alternative to the conventional activated sludge system. The proposed process used in this study, which is packed with floating media (i.e. expanded polystylene), has advantages of biofilter system and alternative flow system and they are incorporated into one process. Pilot and bench scale studies were performed using domestic wastewater. In the results of pilot plant study, it was observed that the stable effluent water quality was achieved and it met the present effluent criteria of suspended solid (SS), organic matters, T-N and T-P. In the study for determination of the cycle of backwashing, it was observed that the cycle of backwashing depended on BOD loading rates of influents. In the BOD loading rates of $0.5kg\;BOD/m^3{\cdot}day$ and $1.0kg\;BOD/m^3{\cdot}day$, the backwashing cycle of 28 hour and 16 hour were needed, respectively. The optimum backwashing time was 120~80 seconds at the media expansion rate of 50%. In the removal of SS, organic matters, T-N and T-P, SS removal was rather achieved by physical filtration than biological mechanism and the removal of organic matters except for SS, T-N and T-P were mainly rather achieved by biological mechanism than physical filtration. In bench-scale study, the effects of recirculation rate was investigated on removal of SS, TCOD, T-N and T-P. It was observed that the recirculation made removal efficiencies of SS, TCOD, T-N and T-P increased. Especially, in T-N removal, the increase of T-N removal efficiency of 40% was observed in the reicirculation rate of 1Q compared with 0Q.

Distribution of Fecal Sterols and Nonylphenolic Compounds in Sediments from Busan Suyeong Estuary, Impacted by Wastewater Treatment Plant Effluents (하수처리장 방류수역에서 분변계스테롤과 노닐페놀류의 분포 특성)

  • Baek, Seung-Hong;Yoon, Sera;Lee, In-Seok;Hwang, Dong-Woon;Choi, Minkyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.1006-1013
    • /
    • 2014
  • Wastewater organic compounds, that is, nonylphenolic compounds (NPs) and fecal sterols, were measured in surface sediments from Busan Suyeong Estuary, where two wastewater treatment plants (WWTPs) are located, to assess contamination from municipal effluents. The NPs analyzed were nonylphenol, and nonylphenol mono- and di-ethoxylates, all synthetic endocrine disruptors. The fecal sterols analyzed were coprostanol (COP), cholestanol, and epicoprostanol. Concentrations of NPs in the sediments ranged from 146 to 3,723 ng/g, and those of COP ranged from 366 to 13,018 ng/g. Their detection in all of the sediments analyzed indicates widespread pollution by municipal effluents. The highest concentrations of NPs and COP were detected at stations close to outfalls of WWTPs. Their levels in sediments are categorized in the higher range of those previously reported in Korean coastal areas. Moreover, in comparison with screening values of NPs in the Netherlands, Norway, and Canada, more than 50% of the sampling stations exceeded the guidelines. This indicates that the estuary may be adversely influenced by municipal effluents.

Development of High-rate Nitrogen Removal Process Using Submerged MBR Packed with Granular Sulfur of Pilot Scale Plant (Pilot Scale Plant의 황 충진 MBR을 이용한 고효율의 질소제거 공법 개발)

  • Mun, Jin-Yeong;Hwang, Yong-U;Jo, Hyeon-Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.383-390
    • /
    • 2011
  • In this study, a process combined biofiltration with sulfur-utilizing autotrophic denitrification and membrane separation was proposed to examine the efficiency of nitrogen removal. As an experimental device, hollow-fiber module was installed in the center of reactor to generate the flux forward sulfur layer in the cylinder packed with granular sulfur. In addition, a simple module was installed in activated sludge aeration tank which inside and outside of sulfur-using denitrification module was covered with microfilter and the module was considered as an alternative of clarifier. The experiment for developing new MBR process was carried out for three years totally. As the results of first two-year experiment, successful nitrogen removal performance was revealed with lab-scale test and pliot scale plant using artificial wastewater and actual plating wastewater. In this year, pilot scale test using actual domestic wastewater was performed to prove field applicability. As the results, high-rate nitrogen removal performance was confirmed with about 0.19 kg ${NO_3}^--N/m^3$ day of rate. Also significant fouling and pressure increase were not found during the experiment. And, the production ratio of sulfate and the consumption ratio of alkalinity showed a slightly higher value about 311 mg ${SO_4}^{2-}/L$ and 369 mg $CaCO_3$/L, respectively. In conclusion, the developed MBR process can be utilized as an alternative for retrofiting existing wastewater plants as well as new construction of advanced sewage wastewater treatment plants, with cost-effective merit.