• 제목/요약/키워드: Sewage Treatment Plants(STPs)

검색결과 24건 처리시간 0.024초

개발도상국 중국의 하수처리장 운영.관리능 평가 (O&M Evaluating for Sewage Treatment Plants in China as a Developing Country)

  • 김연권;문용택;김홍석;김지연
    • 환경위생공학
    • /
    • 제21권3호
    • /
    • pp.27-36
    • /
    • 2006
  • For the last 20 years, China has transformed itself from a rural economy into an industrial giant, averaging over 8 % annual growth of GDP. Unfortunately, this rapid growth has taken a significant toll on its natural resource base as well, particularly water resources. These problems have been exacerbated by a low level of sewage treatment technology and by the operating and maintenance (O&M). In case of urban areas, most big cities in China have a well functioning sewage system comprised of sewers and sewage treatment plants (STPs). Nevertheless, the existing STPs are still not capable of properly treating the sewage, both quantitatively and qualitatively. The rural areas in China cover a large land, with two-third of the nation's population. The low educational and poor economic states make it hard to process self-protection and management. In the surveyed area in Henan, there was no STPs put into use as of 2004, and the sewer lines are not well organized. The big issue for the currently planned STPs is the collection system not included in the plans.

하수처리시설의 T-N 방류수 수질기준 강화방안에 관한 연구 (A Study on Strengthening Option of T-N Effluent Water Quality Standards of Sewage Treatment Plants)

  • 김지태
    • 한국물환경학회지
    • /
    • 제34권2호
    • /
    • pp.216-225
    • /
    • 2018
  • Over the past 40 years, the public sector has continued to invest in the sewage treatment plants (STPs) in Korea. Currently, the domestic sewage treatment rate is over 90% with the enhancement of operating efficiency of the STPs, and water quality of major rivers has been continuously improved. However, COD and T-N indicators are stagnating or slightly worsening, and though advanced treatment facilities are installed in most of the STPs, there is a limit to the removal of nutrients. Since there are a lot of water pollution sources in the vicinity of the watershed because of high population density in Korea, it is essential to reduce the inflow of the nutrients in order to prevent the eutrophication of the rivers and lakes. While the effluent T-P standard in STPs has greatly strengthened since 2012, which results in the considerable investment for the improvement of treatment process in STPs for the last few years, it is necessary to strengthen the T-N standards, as the effluent standard of T-N has been maintained at 20 mg/L since 2002. In this study, based on the analysis of the effluent T-N standard status of major industrialized countries, and the domestic nitrogen load in public waters, the option of appropriate T-N standard level is reviewed, and the required investment costs and the effect of strengthening the standard are estimated.

국내·외 연구사례를 통해 본 하수처리시설 미세플라스틱 배출특성 및 관리방안 고찰 (A mini-review on discharge characteristics and management of microplastics in sewage treatment plants)

  • 정동환;주병규;이원석;정현미;박준원;김창수
    • 상하수도학회지
    • /
    • 제32권4호
    • /
    • pp.337-348
    • /
    • 2018
  • As the issue of microplastics (MPs) detection in tap water was raised in other countries in 2017, monitoring of MPs in drinking and source water, and sewage treatment plant (STP) effluents was initiated. This study intends to look into other studies on MPs in STPs at home and abroad, and review the characteristics of MPs and their removal efficiencies in the STPs, the risk and effect of MPs on watersheds, and management practices in order to help better understand MPs in STPs. To manage MPs effectively in STPs, it is necessary to investigate the detection of MPs discharged from STPs, do research on human health risk and control measures, and build a monitoring system including standardized analytical methods.

하천수 및 상하수도처리공정에서의 니트로사민류 조사 (Investigating of Nitrosamines in Small tributary rivers, Sewage Tretment Plants and Drinking Water Treatment Plants)

  • 김경아;노재순;빈재훈;김창원
    • 한국물환경학회지
    • /
    • 제26권3호
    • /
    • pp.446-453
    • /
    • 2010
  • This study was investigated nine nitrosamines in small tributary rivers, sewage treatment plants (STPs) and drinking water treatment plants. They are N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosopyrrolidine (NPYR), N-nitrosodi-n-propylamine (NDPA), N-nitrosomorpholine (NMOR), N-nitrosopiperidine (NPIP), N-nitrosodi-n-butylamine (NDBA) and N-nitrosodiphenylamine (NDPHA). The nine nitrosamines were analyzed by gas chromatography mass spectrometry (GC/MS) using solid phase extraction (SPE) with a coconut charcoal cartridge. Among the nine nitrosamines, NDMA, NMEA, NDEA, NDPA NDBA and NDPHA were detected in small tributary rivers and sewage tretment plants. In small tributary rivers, NDMA, NMEA, NDEA, NDPA, NDBA and NDPHA were obtained as ND~16.4 ng/L, ND~17.7 ng/L, ND~102.4 ng/L, ND~455.4 ng/L, ND~330.1 ng/L and ND~161.0 ng/L, respectively. Also NDMA, NMEA, NDEA, NDPA and NDBA were investigated ND~821.4 ng/L, 22.5~55.4 ng/L, 53.2~588.5 ng/L, ND~56.6 ng/L and ND~527.9 ng/L in STPs, respectively. In drinking water treatment plants, NMEA and NDEA concentration were increased to as high as 38.8 ng/L after ozonation process. However nitrosamines were decreased subsequent biological activated carbon (BAC) treatment process. It was supposed that nitrosamines were formed by $O_3$ oxidation and were removed by biodegradation of BAC.

하수처리시설 고상시료 중 잔류의약물질 분석을 위한 전처리법 평가 및 적용 (Evaluation and application of pretreatment methods for pharmaceuticals and personal care products in the solid phase of sewage samples)

  • 박준원;김창수;주병규;이원석;정현미;정동환
    • 상하수도학회지
    • /
    • 제32권6호
    • /
    • pp.559-572
    • /
    • 2018
  • The aim of this study was to evaluate pretreatment methods for 27 pharmaceuticals and personal care products (PPCPs) in various sewage samples using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) and online solid-phase extraction with LC-MS/MS. Extraction efficiencies of PPCPs in the solid phase under different experimental conditions were evaluated, showing that the highest recoveries were obtained with the addition of sodium sulfate and ethylenediaminetetraacetic acid disodium salt dehydrate in acidified conditions. The recoveries of target compounds ranged from 91 to 117.2% for liquid samples and from 61.3 to 137.2% for solid samples, with a good precision. The methods under development were applied to sewage samples collected in two sewage treatment plants (STPs) to determine PPCPs in liquid and solid phases. Out of 27 PPCPs, more than 19 compounds were detected in liquid samples (i.e., influent and effluent) of two STPs, with concentration ranges of LOQ-33,152 ng/L in influents and LOQ-4,523 ng/L in effluents, respectively. In addition, some PPCPs such as acetylsalicylic acid, ibuprofen, and ofloxacin were detected at high concentrations in activated sludge as well as in excess sludge. This methodology was successfully applied to sewage samples for the determination of the target compounds in STPs.

강우시 저농도 고수리부하가 회분식 반응조 제거효율에 미치는 영향 (Effects of Inflow Fluctuation on the Removal Efficiency in Low Strength Sewage Treatment using Sequencing Batch Reactor Process during Rainfall)

  • 어성욱;김건하;손봉호
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.91-96
    • /
    • 2006
  • Many small scale Sewage Treatment Plants (STPs) are currently being constructed at many rural areas. The STPs in rural area suffer from low concentration and large inflow quantity fluctuation during wet weather mainly due to illicit combined sewer system. Sequencing Batch Reactor (SBR) is a process effectively coping with these obstacles. The main objective of this study was to evaluate SBR with high hydraulic loading and low inflow concentration. The operating conditions tested were: organic loading rate = $0.17-0.42KgBOD/m^3/d$, hydraulic loadings = $12.1-61.5m^3/m^2/d$, average MLSS concentration = 2500 mg/L, F/M ratio = 0.026-0.17 KgBOD/Kg MLSS, HRT = 9-12 hr HRT, and SRT = 5.6-33.6 days. Organic loading rate on SBR did not impact significantly on BOD and SS removal efficiencies. To increase treatment efficiencies, low hydraulic loading rate with low concentration was required. The results suggested that low influent concentration with high inflow rates during wet weather requires extended time for settling.

하수처리장 에너지 자립화를 위한 하수 에너지 잠재력 회수 기술 (Recovering the Energy Potential of Sewage as Approach to Energy Self-Sufficient Sewage Treatment)

  • 배효관
    • 한국물환경학회지
    • /
    • 제34권1호
    • /
    • pp.121-131
    • /
    • 2018
  • Domestic sewage treatment plants (STPs) consume about 0.5 % of total electric energy produced annually, which is equivalent to 207.7 billion Korean won per year. To minimize the energy consumption and as a way of mitigating the depletion of energy sources, the sewage treatment strategy should be improved to the level of "energy positive". The core processes for the energy positive sewage treatment include A-stage for energy recovery and B-stage for energy-efficient nitrogen removal. The integrated process is known as the A/B-process. In A-stage, chemically enhanced primary treatment (CEPT) or high rate activated sludge (HRAS) processes can be utilized by modifying the primary settling in the first stage of sewage treatment. CEPT utilizes chemical coagulation and flocculation, while HRAS applies returned activated sludge for the efficient recovery of organic contents. The two processes showed organic recovery efficiencies ranging from 60 to 70 %. At a given recovery efficiency of 80 %, 17.3 % of energy potential ($1,398kJ/m^3$) is recovered through the anaerobic digestion and combustion of methane. Besides, anaerobic membrane bioreactor (AnMBR) can recover 85% of organic contents and generate $1,580kJ/m^3$ from the sewage. The recovered energy is equal to the amount of energy consumption by sewage treatment equipped with anaerobic ammonium oxidation (ANAMMOX)-based B-stage, $810{\sim}1,620kJ/m^3$. Therefore, it is possible to upgrade STPs as efficient as energy neutral. However, additional novel technologies, such as, fuel cell and co-digestion, should be applied to achieve "energy positive" sewage treatment.

Toxicity characteristics of sewage treatment effluents and potential contribution of micropollutant residuals

  • Kim, Younghee;Farnazo, Danvir Mark
    • Journal of Ecology and Environment
    • /
    • 제41권11호
    • /
    • pp.318-327
    • /
    • 2017
  • Background: A typical sewage treatment plant is designed for organic and nutrient removal from municipal sewage water and not targeted to eliminate micropollutants such as pesticides, pharmaceuticals, and nano-sized metals which become a big concern for sustainable human and ecological system and are mainly discharged from sewage treatment plant. Therefore, despite contaminant removal by wastewater treatment processes, there are still remaining environmental risks by untreated pollutants in STP (sewage treatment plant) effluents. This study performed aquatic toxicity tests of raw wastewater and treated effluents in two sewage treatment plants to evaluate toxicity reduction by wastewater treatment process and analyze concentration of contaminants to reveal potential toxic factors in STP effluents. Methods: Water samples were collected from each treatment steps of two STPs, and acute and chronic toxicity tests were conducted following USEPA (United States Environmental Protection Agency) and OECD (Organization for Economic Cooperation and Development) guidelines. Endpoints were immobility for mortality and reproduction effect for estrogenicity. Results: Acute $EC_{50}s$ (median effective concentration) of influents for Seungki (SK) and Jungnang (JN) STPs are $54.13{\pm}32.64%$ and $30.38{\pm}24.96%$, respectively, and reduced to $96.49{\pm}7.84%$ and 100%. Acute toxicity reduction was clearly correlated with SS (suspended solids) concentration because of filter feeding characteristics of test organisms. Chronic toxicity tests revealed that lethal effect was reduced and low concentration of influents showed higher number of neonates. However, toxicity reduction was not related to nutrient removal. Fecundity effect positively increased in treated wastewater compared to that in raw wastewater, and no significant differences were observed compared to the control group in JN final effluent implying potential effects of estrogenic compounds in the STP effluents. Conclusions: Conventional wastewater treatment process reduced some organics and nutritional compounds from wastewater, and it results in toxicity reduction in lethal effect and positive reproductive effect but not showing correlation. Unknown estrogenic compounds could be a reason causing the increase of brood size. This study suggests that pharmaceutical residues and nanoparticles in STP effluents are one of the major micropollutants and underline as one of estrogenic effect factors.

서울시 하수처리장 방류수 및 한강 내 PFOA와 PFOS의 과불화화합물 모니터링 연구 (Quantitative Determination of PFOA and PFOS in the Effluent of Sewage Treatment Plants and in Han River)

  • 신미연;임종권;고영림;최경식;조경덕
    • 한국환경보건학회지
    • /
    • 제35권4호
    • /
    • pp.334-342
    • /
    • 2009
  • Perfluorinated compounds (PFCs) have a wide range of domestic and industrial applications, but they are persistent in the environment. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) are among the metabolites of PFCs and occur at high concentration in the environment. Korea is the largest importer of PFC compounds in the world, therefore, the accumulation of these compounds is possible. In this study, the concentrations of PFOS and PFOA were determined in water samples taken from sewage treatment plants (STPs) and the Han River in Seoul, Korea. After extraction with a HLB cartridge, PFCs in the samples were analyzed by HPLC with an ion trap mass spectrometry in electrospray negative mode. Limits of detection was between 1 and 1.6 ng/l. The result showed that the concentrations of PFOS and PFOA in effluent and influent of the four STPs in Seoul were 60~570 ng/l, and not detected (nd)~254 ng/l, respectively. The levels of PFOS and PFOA were higher in the effluents which passed through the treatment process than in influent water samples which was against expectation. The concentration of PFOA and PFOS in the Han River was 60~570 ng/l and nd~254 ng/l, respectively. PFOA was detected in every sample, but PFOS was only detected in the downstreams of the Han River. This result indicates that there is comprehensive contamination of PFCs in the aquatic environment in Korea.

회귀식을 사용한 하수처리장 방류수 CODMn 농도의 총 유기탄소 및 난분해성 물질 농도 전환 (Conversion of CODMn into TOC and Refractory Organic Matter Concentrations for Treated Sewage using Regression Equations)

  • 이태환;이보미;허진;정명숙;강태구
    • 한국물환경학회지
    • /
    • 제26권6호
    • /
    • pp.969-975
    • /
    • 2010
  • Estimating the organic matter loadings from individual treated sewage has become important for establishment of effective management strategies to control refractory organic matter (R-OM) in watersheds. For this study, regression equations were constructed using treated sewage data to convert the chemical oxygen demand (COD) concentrations, which are mostly available from open database, into total organic carbon (TOC) and R-OM concentrations. Effluent samples were collected from five major sewage treatment plants (STPs) located upstream of the lake Paldang. Variations in the OM concentrations were not associated with either the location of the STP or the sampling season. The effluent investigated were characterized by higher ratio of R-OM with respect to biodegradable organic matter (B-OM) and higher presence of dissolved organic matters (DOM) versus particulate organic matter (POM). Compared to $COD_{Mn}$, $COD_{Cr}$ exhibited higher oxidation efficiencies and greater variations in the concentrations. The concentrations of $COD_{Mn}$ were positively correlated with dissolved organic carbon (DOC), total organic carbon (TOC), and R-OM concentrations. There was nearly no seasonal and annual variation in the regression equations between $COD_{Mn}$ and TOC or R-OM concentrations. The constructed regression equations for TOC and R-OM were $0.650({\pm}0.071){\times}COD_{Mn}+1.426({\pm}0.575)$ and $0.340({\pm}0.083){\times}COD_{Mn}+2.054({\pm}0.670)$, respectively. The established equations are expected to contribute to estimating OM loadings from the STPs into the lake Paldang and also to compensating for the deficiency of the data for effluent OM concentrations in STP.