• 제목/요약/키워드: Sewage Concentration

검색결과 529건 처리시간 0.021초

농촌 지역 마을하수도 유입 하수 특성과 효율 분석 (Analysis of RCSTP Sewage Characteristics and Treatment Efficiency in Rural Area)

  • 임지열;정동기;길경익
    • 한국물환경학회지
    • /
    • 제28권6호
    • /
    • pp.851-858
    • /
    • 2012
  • This study conducted a result analysis on operation of 26 Rural Community Sewage Treatment Plant (RCSTP) newly constructed in Yeong-yang, Bong-hwa and An-dong areas which are located at the upper region of An-dong Dam and Im-ha Dam. Based on operation result, an analysis on characteristics of sewage in each area and the treatment efficiency of the installed treatment process was conducted. The result of analysis on characteristics of sewage has shown the difference in concentration of the sewage according to area characteristics. Sewage in areas with frequent occurrence of agricultural water and livestock wastewater had high concentration. It is important to select the most suitable treatment process when selecting a treatment process for RCSTP according to properties of sewage in each area. As a result of operation, the disposal efficiency for organic matter and suspended solids was stable with less fluctuation, but the disposal efficiency for nitrogen and phosphorus showed high fluctuation. This signifies that it is necessary to pay attention to operation condition management of nitrogen and phosphorus when operating RCSTP.

Effects of Volatile Solid Concentration and Mixing Ratio on Hydrogen Production by Co-Digesting Molasses Wastewater and Sewage Sludge

  • Lee, Jung-Yeol;Wee, Daehyun;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권11호
    • /
    • pp.1542-1550
    • /
    • 2014
  • Co-digesting molasses wastewater and sewage sludge was evaluated for hydrogen production by response surface methodology (RSM). Batch experiments in accordance with various dilution ratios (40- to 5-fold) and waste mixing composition ratios (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100, on a volume basis) were conducted. Volatile solid (VS) concentration strongly affected the hydrogen production rate and yield compared with the waste mixing ratio. The specific hydrogen production rate was predicted to be optimal when the VS concentration ranged from 10 to 12 g/l at all the mixing ratios of molasses wastewater and sewage sludge. A hydrogen yield of over 50 ml $H_2/gVS_{removed}$ was obtained from mixed waste of 10% sewage sludge and 10 g/l VS (about 10-fold dilution ratio). The optimal chemical oxygen demand/total nitrogen ratio for co-digesting molasses wastewater and sewage sludge was between 250 and 300 with a hydrogen yield above 20 ml $H_2/gVS_{removed}$.

기질 농도 (S0)와 F/M 비 (S0/X0)가 농축 하수 슬러지 혐기성 소화에 미치는 영향 (Effect of Feed concentration (S0) and F/M ratio (S0/X0) on Anaerobic Digestion of Thickened Sewage Sludge)

  • 김상현;주현준
    • 상하수도학회지
    • /
    • 제26권6호
    • /
    • pp.825-831
    • /
    • 2012
  • The retrofitting of a thickening unit process is widely considered in municipal wastewater treatment plants in Korea to enhance the anaerobic digestion efficiency. The authors examined the effect of feed concentration (2-34.1 g VS/L) and feed to microorganism (F/M) ratio (0.50-1.35 g VS/g VS) on anaerobic batch digestion of sewage sludge. Methane yield over 90 mL $CH_4/g$ $VS_{feed}$ was found at a feed concentration in the range of 12-26 g VS/L and a F/M ratio below 0.6 g VS/g VS. A high F/M ratio decreased methane yield and rate with oragnic acid accumulation. As sudden increase of sewage sludge concentration prior to anaerobic digestion would jeopardize the digester performance due to the rasied F/M ratio, gradual increase of the sludge feed concentration or an additional biomass retention in the digester is recommended.

${\cdot}$ 폐수처리장에서의 생물학적 질소제거 프로그램 검증 (Verification of biological nitrogen removal program in sewage or wastewater treatment plants)

  • 김희선;이병대
    • 한국응용과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.332-338
    • /
    • 2007
  • Based on the experiment results of laboratory scale modified anoxic-oxic process for leachate treatment, biological nitrogen removal program was verified in terms of SS, COD, and TN concentration. These measured water qualities concentration could be predicted by biological nitrogen removal program with $R^2$ of 0.994, 0.987, 0.990, respectively. No error was occurred between water qualities concentration and quite wide range of water qualities concentration (i.e., 50-4200 mg/L) during the modelling. Each unit and final effluent of simulated concentration was kept good relationship with that of measured concentration therefore this biological nitrogen removal program for sewage or wastewater treatment plants has good reliance.

Influence of Sewage Sludge Application on Soil Nitrate Distribution in a Clay Soil

  • 이상모
    • 한국환경농학회지
    • /
    • 제22권1호
    • /
    • pp.70-73
    • /
    • 2003
  • Nitrate contamination in the aquatic systems is the primary indicator of poor agricultural management. The influence of sewage sludge application rates (0, 10, 25, 50 and 100 dry Mg/ha) on distribution of nitrate originating from the sewage sludge in soil profiles was investigated. Soil profile monitoring of nitrate was carried out with a Lakeland clay soil in 1997. Irrespectively of the sewage sludge application rates up to 50 dry Mg/ha, the concentration of $NO_3$-N at the 120 cm depth was below 10 mg/kg and the difference due to the amount of sewage sludge application was negligible at this depth. There was virtually no $NO_3$-N below 120 cm depth and this was confirmed by a deep sampling up to 300 cm depth. Most of the nitrate remained in the surface 60 cm of the soil. Below 120 cm depth nitrate concentration was very low because of the denitrification even at high sewage sludge rate of 100 dry Mg/ha. The $NO_3$-N concentrations in the soil fluctuated over the growing season due to plant uptake and denitrification. The risk of groundwater contamination by nitrate from sewage sludge application up to high rate of 100 dry Mg/ha was very low in a wheat grown clay soil with high water table ( < 3 m).

국내 하수처리시설에 인공지능기술 적용을 위한 사례 연구 (The Case Studies of Artificial Intelligence Technology for apply at The Sewage Treatment Plant)

  • 김태우;이호식
    • 한국물환경학회지
    • /
    • 제35권4호
    • /
    • pp.370-378
    • /
    • 2019
  • In the recent years, various studies have presented stable and economic methods for increased regulations and compliance in sewage treatment plants. In some sewage treatment plants, the effluent concentration exceeded the regulations, or the effluent concentration was manipulated. This indicates that the process is currently inefficient to operate and control sewage treatment plants. The operation and control method of sewage treatment plant is mathematically dealing with a physical and chemical mechanism for the anticipated situation during operation. In addition, there are some limitations, such as situations that are different from the actual sewage treatment plant. Therefore, it is necessary to find a more stable and economical way to enhance the operational and control method. AI (Artificial Intelligence) technology is selected among various methods. There are very few cases of applying and utilizing AI technology in domestic sewage treatment plants. In addition, it failed to define specific definitions of applying AI technologies. The purpose of this study is to present the application of AI technology to domestic sewage treatment plants by comparing and analyzing various cases. This study presented the AI technology algorithm system, verification method, data collection, energy and operating costs as methods of applying AI technology.

시판용 미생물탈취제를 이용한 하수 악취 내 황화수소 저감에 관한 실험적 연구 (Experimental Study on Hydrogen Sulfide Abatement in Sewage Odor Using Microbial Deodorants on the Market)

  • 박상진;권수열
    • 한국환경보건학회지
    • /
    • 제46권2호
    • /
    • pp.170-183
    • /
    • 2020
  • Objectives: This study was conducted to estimate a technology to reduce hydrogen sulfide (H2S) in sewage odor using microbial deodorant. Methods: After injecting five commercially available microbial deodorants into fresh sewage, the concentration of hydrogen sulfide over time was measured using the headspace method. H2S concentration in odor samples was measured using gas chromatograph/FPD. Calculated odor concentration and calculated odor intensity by H2S concentration remaining after treatment with microbial deodorant were evaluated theoretically. Results: The rate of H2S abatement by microbial deodorant differed depending on the experimental conditions and the type of deodorant, but it was found to range from 63 to 82%. Especially, two deodorants showed high H2S reduction rates of over 80% on average. However, based on the best deodorant, the theoretically calculated odor concentration by H2S after microbial deodorant treatment was 4,400 OUk, and the theoretical odor intensity was also rated at 4 degrees or higher. Conclusions: In conclusion, microbial deodorant is considered to have a relatively high effect on reducing H2S in sewage odor. However, even after treatment with microbial deodorant, calculated odor concentration and calculated odor intensity were relatively high. This is thought to be caused by other odorous substances besides H2S.

저농도 도시하수 처리를 위한 활성슬러지공정에서 HRT 및 SRT가 처리효율에 미치는 영향 (The Effect of HRT and SRT on Treatment Efficiency of Activated Sludge Process for Low Concentration Municipal Sewage)

  • 황규대;김민호;고새봄
    • 상하수도학회지
    • /
    • 제11권1호
    • /
    • pp.64-73
    • /
    • 1997
  • Most of the municipal wastewater treatment plants operated in Korea are designed for high concentrations municipal sewage. However, activated sludge process employed by municipal wastewater treatment plant is operated at low organic loading. The objective of this study was to determine optimum operating condition of activated sludge process for treatment of low concentration municipal sewage. Three bench scale activated sludge reactors were operated to investigate the effect of HRT and SRT on the COD and TSS removal efficiency. The average concentration of TSS, SCOD, SBOD and TKN in influent were 118mg/l, 61mg/l, 21mg/l, and 12mg/l, respectively. The activated sludge reactors operated with various HRT and SRT showed about 89-93% TSS removal efficiency. HRT and SRT does not affect the TSS removal efficiency of actvatied sludge process significantly. However, HRT affected the SCOD removal efficiency slightly. As the HRT decreases from 13hours to 3hours, the SCOD removal efficiency decreases from 67% to 56%. The average effluent TCOD concentration of the reactor operated with 3hours of HRT was approximatly 40-45mg/l. Kinetic coefficient yield (Yt) and decay coefficients(Kd) were 0.594-0.954 mgMLVSS/mgCOD and $0.0197-0.0317day^{-1}$, respectively. Low concentration municipal sewage can be treated with 3 hours of HRT without effluent quality deterioration and SRT does not affect the substrate removal efficiency at this operation condition.

  • PDF

서울시 하수처리장 수질의 변동 및 방류수의 영향 평가 (The Assessment on the Effect of Discharge and Variation of Water Quality from the Sewage Treatment Plants in Seoul)

  • 곽미애;정종흡;어수미;이홍근
    • 환경위생공학
    • /
    • 제19권3호
    • /
    • pp.1-12
    • /
    • 2004
  • This study was conducted to evaluate the variation characteristics of influent and effluent quality from sewage treatment facilities using activated sludge processes and to assess the impact caused by discharge of treated sewage on the receiving water Monthly data of five water quality items (BOD, COD, SS, T-N, T-P) were used to understand the water quality at three sewage treatment plants in Seoul for five years from 1999 to 2003. Concentration differences of water quality parameters were observed between upstream and downstream site at the sewage treatment plant outfall to investigate the impact of discharge in Tan stream and Han river basin. 1. Due to the effect of continuous improvement in sewer system, the concentrations of influent went on increasing generally. 2. Effluent concentrations of BOD, COD and SS showed the trend of a little decreasing, but the trend of increasing in T-N and T-P. 3. In Tan stream basin, the impact of sewage treatment plant discharge was not observed directly, because concentration of discharge was lower than stream water's. But discharges from sewage treatment plants affected water quality at downstream site in Han river, concentration of T-P especially.

밀폐공간 종류별 유해가스 발생 농도 평가 (Exposure Assessment of Hazardous gases in Confined Spaces)

  • 박현희;유계묵;함승헌;정광재;신민아;이구용;장경조;윤충식
    • 한국산업보건학회지
    • /
    • 제19권4호
    • /
    • pp.381-389
    • /
    • 2009
  • Confined spaces are inherently dangerous workplace and many fatal and nonfatal accidents have been reported. Even though these accidents occur in various kinds of confined spaces, there has rarely been reported on the health hazard agent, i.e., the types of gases and their concentration ranges. Therefore in this study, we evaluated several toxic and asphyxiating gas concentrations in various confined spaces. We surveyed 57 manholes, 3 sewage treatment plants, 2 yellow radish manufacturing companies and 7 barges to measure the concentrations of oxygen($O_2$), hydrogen sulfide($H_2S$), carbon monoxide(CO), ammonia($NH_3$). Lower Explosion Limits(LEL) and Volatile Organic Compounds (VOCs). Those four types of confined spaces occupies 56% of accidents during last 9 years in Korea. In 57 manholes, the concentration varied according to the types of manholes; rainfall and sewage, and by location; residential and industrial areas. Sewage manhole in industrial area was evaluated as the most hazardous than other types of manhole like rainfall manholes, residential sewage manholes. The highest $H_2S$ concentration and the lowest $O_2$ concentration at sewage manhole in industrial area were 300 ppm, 8.7% respectively. In 3 sewage treatment plants, $H_2S$ and $NH_3$ concentrations were reached up to the 500 ppm and 200 ppm respectively. Two yellow radish manufacturing companies showed the concentrations of 316 ppm, 505.2 ppm, 90 ppm and 15.7% for $H_2S$, CO, VOCs and $O_2$, respectively. Seven barges showed 15.9%~20.9% oxygen concentration. Gas species and concentration ranges varied by the types and location of confined spaces; CO, $H_2S$, $O_2$ could be hazardous in manhole, especially manhole connected to sewage plants. CO, $H_2S$, LEL, $O_2$, $NH_3$ should be controlled in sludge silo and sluge pumping confined spaces in sewage treatment plant. The activity of lifting out radish from the storage tank was evaluated more hazardous rather than the other activities in yellow radish manufacturing industry. The employers must conduct the survey to identify all possible confined spaces in their local workplace prior to performing the tasks. At the national level to reduce the accidents in the confined spaces, we suggest that systemic approach and active education program including possible hazards, standard operation procedures, ventilation plan, and personal protective equipment in confined spaces should be implemented.