Objectives: To evaluate the performance of models to predict AMI patients death using severity adjustment measures in Korea. Methods: Medical records of 861 patients treated by AMI in 7 general hospitals during 1996 and 1997 were reviewed by trained nurses. We measured the severity of patients by APACHE III, MedisGroups, CSI and DS. Using each severity method a predictive mortality for each patient was calculated from a logistic regression model including the severity score. The statistical performance of each severity method model was evaluated by using c-statistics and R2. For each hospital, z scores compared actual and expected mortality rates. Results: The overall in-hospital mortality was 14.5%, ranged from 10.0% to 22.2%. The distributions of severity scores for each method was significantly different by hospitals. The four severity-adjusted models to predict AMI patients death varied in their statistical performance for discrimination power of patients death. Order of Severity-adjusted mortality rates and z scores by four severity measures was different. Conclusion: Severity-adjusted mortality rates of AMI patients might be applied as an indicator for hospital performance evaluation in Korea. Because different severity methods frequently produce different impressions about relative hospital performance, more studies has to be done to use it as quality indicator and more attention should be paid to select appropriate severity measures.
Objective : Health insurers and policy makers are increasingly examining the hospital mortality rate as an indicator of hospital quality and performance. To be meaningful, a risk-adjustment of the death rates must be implemented. This study reviewed 5 severity measurement methods and applied them to the same data set to determine whether judgments regarding the severity-adjusted hospital mortality rates were sensitive to the specific severity measure. Methods : The medical records of 584 patients who underwent coronary artery bypass graft surgery in 6 general hospitals during 1996 and 1997 were reviewed by trained nurses. The MedisGroups, Disease Staging, Computerized Severity Index, APACHE III and KDRG were used to quantify severity of the patients. The predictive probability of death was calculated for each patient in the sample from a multivariate logistic regression model including the severity score, age and sex to evaluate the hospitals' performance, the ratio of the observed number of deaths to the expected number for each hospital was calculated. Results : The overall in-hospital mortality rate was 7.0%, ranging from 2.7% to 15.7% depending on the particular hospital. After the severity adjustment, the mortality rates for each hospital showed little difference according to the severity measure. The 5 severity measurement methods varied in their statistical performance. All had a higher c statistic and $R^2$ than the model containing only age and sex. There was a little difference in the relative hospital performance evaluation by the severity measure. Conclusion : These results suggest that judgments regarding a hospital's performance based on severity adjusted mortality can be sensitive to the severity measurement method. Although the 5 severity measures regarding hospital performance concurred, more often than would be expected by chance, the assessment of an individual hospital mortality rates varied by the different severity measurement method used.
본 연구의 목적은 관상동맥중재술 입원 환자의 재원일수의 변이를 규명하기 위해 중증도 보정 모형을 개발하였다. 2004~2006년 퇴원손상환자 조사자료 중 관상동맥중재술 입원 환자 1,011건을 연구대상으로 하였으며, 재원일수의 변이분석은 t검정, 분산분석을 실시하였고, 중증도 보정 재원일수 모형은 데이터마이닝 기법을 이용하였다. 개발된 다중회귀분석 모형을 이용하여 예측 재원일수를 산출하고 이를 실제 재원일수와 비교한 결과 병상규모별, 보험유형과 지역별로 재원일수의 변이가 존재하는 것으로 나타났다. 환자 특성과 중증도를 통제하고 나타난 재원일수의 변이는 공급자 요인으로 설명될 수 있는데, 진료행태나 의료자원에 대한 후속 연구가 필요한 것으로 보인다. 본 연구는 행정 데이터를 이용하여 중증도 모형을 개발하고 변이를 확인하였다는 점에서 활용의 효용성을 높이는 데 기여할 것으로 사료된다.
본 연구는 기존 동반질환을 이용한 중증도 보정 방법의 제한점을 보완하기 위해 급성심근경색증 환자의 맞춤형 중증도 보정방법을 개발하고, 이의 타당성을 평가하기 위해 수행되었다. 이를 위하여 질병관리본부에서 2006년부터 2015년까지 10년간 수집한 퇴원손상심층조사 자료 중 주진단이 급성심근경색증인 한국표준질병사인분류(KCD-7) 코드 I20.0~I20.9의 대상자를 추출하였고, 동반질환 중증도 보정 도구로는 기존 활용되고 있는 CCI(Charlson comorbidity index), ECI(Elixhauser comorbidity index)와 새로이 제안하는 CCS(Clinical Classification Software)를 사용하였다. 이에 대한 중증도 보정 사망예측모형 개발을 위하여 머신러닝 기법인 로지스틱 회귀분석, 의사결정나무, 신경망, 서포트 벡터 머신기법을 활용하여 비교하였고 각각의 AUC(Area Under Curve)를 이용하여 개발된 모형을 평가하였다. 이를 평가한 결과 중증도 보정도구로는 CCS 가 가장 우수한 것으로 나타났으며, 머신러닝 기법 중에서는 서포트 벡터 머신을 이용한 모형의 예측력이 가장 우수한 것으로 확인되었다. 이에 향후 의료서비스 결과평가 등 중증도 보정을 위한 연구에서는 본 연구에서 제시한 맞춤형 중증도 보정방법과 머신러닝 기법을 활용하도록 하는 것을 제안한다.
본 연구는 급성심근경색증 환자의 사망률 측정을 위한 중증도 보정 모형을 개발하여 의료의 질 평가에 필요한 기초자료를 제공하고자 수행되었다. 이를 위해서 질병관리본부의 2005-2008년 퇴원손상환자 699,701건의 자료를 분석하였다. Charlson Comorbidity Index 보정 방법을 이용한 경우와 새롭게 개발된 중증도 보정 모형의 예측력 및 적합도를 비교하기 위해 로지스틱 회귀분석을 실시하였다. 새롭게 개발된 모형에는 연령, 성, 입원경로, PCI 유무, CABG 유무, 동반질환 12가지 변수가 포함되었다. 분석결과 CCI를 이용한 중증도 보정 모형보다 새롭게 개발된 중증도 보정 사망 모형의 C 통계량 값이 0.796(95%CI=0.771-0.821)으로 더 높아 모형의 예측력이 더 우수한 것으로 나타났다. 본 연구를 통하여 중증도 보정 방법에 따라 사망률, 유병률, 예측력에도 차이가 있음을 확인하였다. 향후에 이모형은 의료의 질 평가에 이용하고, 질환별로 임상적 의미와 특성, 모형의 통계적 적합성 등을 고려한 중증도 보정모형이 계속해서 개발되어야 할 것이다.
This study was conducted to propose an insight into the appropriateness of hospital length of stay(LOS) by developing a severity-adjusted LOS model for patients with pneumonia, organism unspecified. The pneumonia risk-adjustment model developed in this paper is based upon the 2006-2010 the Korean National Hospital Discharge in-depth Injury Survey. Decision tree analysis revealed that age, admission type, insurance type, and the presence of additional disorders(pleural effusion, respiratory failure, sepsis, congestive heart failure etc.) were major factors affecting the severity-adjusted model using the Clinical Classifications Software(CCS). Also there was a difference in LOS among the regional hospitals, especially the hospital LOS has not been efficiently managed in Gyeongsangbuk-do, Jeollanam-do, Jeollabuk-do, Daejeon, and Busan. To appropriately manage hospital LOS, reliable statistical information about severity-adjusted LOS should be generated on a national level to make sure that hospitals voluntarily reduce excessive LOS and manage main causes of delayed discharge.
Background : Among 'structure', 'process' and 'outcome' approaches, outcome evaluation is considered as the most direct and best approach to assess the quality of health care providers. Risk-adjustment is an essential method to compare outcome across providers. This study has aims to judge performance of hospitals by severity adjusted mortality rates of coronary artery bypass graft (CABG) surgery. Methods : Medical records of 584 patients who got the CABG surgery in 6 general hospitals during 1996 and 1997 were reviewed by trained nurses. The MedisGroups was used to quantify severity of patients. The predictive probability of death was calculated for each patient in the sample from a multivariate logistic regression model including the severity score, age and sex. For evaluation of hospital performance, we calculated ratio of observed number to expected number of deaths and z score [(observed number of deaths - expected number of deaths)/square root of the variance in the number of deaths], and compared observed mortality rate with confidence interval of adjusted mortality rate for each hospital. Results : The overall in-hospital mortality was 7.0%, ranged from 2.7% to 15.7% by hospital. After severity adjustment the mortality by hospital was from 2.7% to 10.7%. One hospital with poor performance was distinctly divided from others with good performance. Conclusion : In conclusion, severity-adjusted mortality rate of CABG surgery might be applied as an indicator for hospital performance evaluation in Korea. But more pilot studies and improvement of methodologies has to be done to use it as quality indicator.
Background: The purpose of this study was to develop risk-adjustment models for acute stroke mortality that were based on data from Health Insurance Review and Assessment Service (HIRA) dataset and to evaluate the validity of these models for comparing hospital performance. Methods: We identified prognostic factors of acute stroke mortality through literature review. On the basis of the avaliable data, the following factors was included in risk adjustment models: age, sex, stroke subtype, stroke severity, and comorbid conditions. Survey data in 2014 was used for development and 2012 dataset was analysed for validation. Prediction models of acute stroke mortality by stroke type were developed using logistic regression. Model performance was evaluated using C-statistics, $R^2$ values, and Hosmer-Lemeshow goodness-of-fit statistics. Results: We excluded some of the clinical factors such as mental status, vital sign, and lab finding from risk adjustment model because there is no avaliable data. The ischemic stroke model with age, sex, and stroke severity (categorical) showed good performance (C-statistic=0.881, Hosmer-Lemeshow test p=0.371). The hemorrhagic stroke model with age, sex, stroke subtype, and stroke severity (categorical) also showed good performance (C-statistic=0.867, Hosmer-Lemeshow test p=0.850). Conclusion: Among risk adjustment models we recommend the model including age, sex, stroke severity, and stroke subtype for HIRA assessment. However, this model may be inappropriate for comparing hospital performance due to several methodological weaknesses such as lack of clinical information, variations across hospitals in the coding of comorbidities, inability to discriminate between comorbidity and complication, missing of stroke severity, and small case number of hospitals. Therefore, further studies are needed to enhance the validity of the risk adjustment model of acute stroke mortality.
본 연구는 장애학생의 학교생활적응에 미치는 영향 요인을 분석함으로써 장애 아동 및 청소년들이 학교생활에 잘 적응하도록 돕기 위한 방안을 수립하는 데 필요한 기초자료를 제공하는 것을 목적으로 하고 있다. 이를 위해 보건복지부에서 실시한 2014년 장애인실태조사 원자료를 분석자료로 하여, 초등학교, 중학교, 고등학교에 재학 중인 학생 197명을 대상으로 학교급별, 학교유형, 장애유형, 장애정도, 주관적건강상태, 차별경험 등 학교 및 장애 특성요인이 학교생활 적응에 영향을 미치는 지를 검증하고자 집단 간 평균비교 및 다중회귀분석 등을 실시하였다. 분석결과 학교급별, 학교유형, 장애정도 등이 장애학생의 학교생활 적응에 영향을 미치는 것으로 나타났다. 따라서 장애학생의 학교생활 적응을 돕기 위한 또래지원 프로그램 도입, 특수학급 증설, 보조인력, 제도적 보완 등이 필요하다.
본 연구의 목적은 지역사회획득 폐렴 입원 환자의 재원일수의 변이를 분석하기 위해 중증도 모형을 개발하였다. 2004~2006년 퇴원손상환자 조사자료 중 지역사회획득 폐렴환자 5,353건을 연구대상으로 하였으며, 재원일수의 차이분석은 t검정, 분산분석을 실시하였고, 중증도 보정 재원일수 예측 모형은 데이터마이닝 기법을 이용하였다. 여자에 비해 남자, 연령이 많을수록, 의료급여, 응급실 경유 환자의 재원일수가 긴 반면, 병원사망 여부에 따라서는 유의한 차이가 없었다. 개발된 의사결정나무 모형을 이용하여 예측 재원일수를 산출하고 표준화한 값을 비교한 결과 타지역 진료여부에 따라서 재원일수의 차이는 없는 반면, 보험유형과 지역별로 재원일수의 변이가 존재하는 것으로 나타났다. 환자 특성과 중증도를 통제하고 나타난 재원일수의 변이는 공급자 요인으로 설명될 수 있는데, 진료행태나 의료자원에 대한 후속 연구가 필요한 것으로 보인다. 본 연구는 행정 데이터를 이용하여 중증도 모형을 개발하고 변이를 확인하였다는 점에서 활용의 효용성을 높이는 데 기여할 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.