• Title/Summary/Keyword: Seventh Curriculum

Search Result 115, Processing Time 0.02 seconds

The Effect of Enriched-Supplementary Ability-Grouping Within Class to Education in Middle School Science: In the Capter of 'Water Cycle and Weather Change' (삼화 ${\cdot}$ 보충형 수준별 수업모형의 중학교 과학 교육에서의 적용 효과; '물의 순환과 일기변화 단원을 중심으로)

  • Kim, Hye-Hyun;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.103-115
    • /
    • 2000
  • The ability-grouping is the essence of the seventh educational curriculum, applied to school from year 2000, and its enriched-supplementary type will be carried out for science course. This study examines the effect of the enriched-supplementary ability-grouping within class to student's academic achievement and the attitude, related to science. Thus we developed teaching and learning methods with intellectual level about the subject of 'Water Circulation and Weather Change' in Middle-School Science 2. Then we tested 152 eighth graders who were divided into the experimental and control groups. The experimental one was taught through the ability-grouping for about six weeks, while the control through conventional lecture. The improvement of the experimental group in academic achievement was more effective than that of the control, and particularly to below-average students who ranked in lower thirty percent. The experimental one got more negative change in domain 'Science as a Subject, and in subdomain 'Anxiety in Science Lesson'. While outstanding students who ranked in upper thirty percent showed a significant positive change in subdomain 'Satisfaction in Teaching Method, the below-average were negatively changed in subdomain 'Anxiety in Science Lesson'. The current ability-grouping was suitable for the improvement of academic achievement, but not for the general attitude related to science. In order to enhance the ability-grouping effect in science education, we need to additionally consider student's interest and concern in grouping, and develop various teaching and learning methods together with proper textbook contents.

  • PDF

Elementary School Teachers' Educational Experiences, Readiness, and Needs for Science Education That Addresses the Risks Posed by Science and Technology (과학기술로 인해 발생할 수 있는 위험을 다루는 과학교육에 관한 초등교사의 교육 경험과 교육 준비도 및 요구도)

  • Kim, Jinhee;Na, Jiyeon
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.4
    • /
    • pp.523-537
    • /
    • 2023
  • This study encompassed the responses of 284 elementary school teachers, focusing on their teaching experiences, readiness, and needs for science education concerning the risk posed by science and technology. The key findings are summarized as follows. First, a significant portion of teachers lacked prior experience in addressing risks associated with science and technology within their science education practices. Second, a greater number of teachers were aware of the inclusion of risk-related content in the 2022 revised science curriculum's achievement standards than those who were not. Third, in terms of teachers' understanding of risk perception, risk assessment, and risk management, they demonstrated a relatively high level of understanding of risk perception but a lower level of understanding of risk assessment. Fourth, most teachers had not undergone any formal education or training related to risk. Fifth, among the 10 objectives of risk education, teachers displayed the highest competence in teaching "information use" and "action skills," while their lowest competence was observed in "interpreting probabilities" and "evaluating risk assessment." Sixth, a majority of teachers believe that it is important to teach about the risks posed by science and technology in school science classes, with "action skills," "information use," and "decision-making skills" being considered the most important and "action skills," "information use," and "influence of mass media" being regarded as the most urgent. However, teachers anticipated difficulties in addressing risk in school science classes, including a lack of relevant educational materials, a lack of understanding of teaching theories related to risk education, and the relationship between science curriculum content and achievement standards. Seventh, as a result of calculating the educational needs for each of the 10 goals of risk education, "influence of risk perception," "decision-making skills," "action skills," and "evaluate risk assessment" were the priority needs of elementary school teachers.

Awareness of Pre-Service Elementary Teachers' on Science Teaching-Learning Lesson Plan (초등예비교사의 과학과 교수·학습 과정안 작성에 대한 인식)

  • Yong-Seob, Lee;Sun-Sik, Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.3
    • /
    • pp.335-344
    • /
    • 2022
  • This study was conducted for 4 weeks on the preparation of the science teaching/learning course plan for 109 students in 4 classes of the 2nd year intensive course at B University of Education. Pre-service elementary teachers attended a two-week field training practice after listening to a lecture on how to write a science teaching and learning course plan. Pre-service elementary teachers tried to find out about the selection of materials and the degree of connection between the course plan and the class to prepare the science teaching/learning course plan. The researcher completed the questionnaire by reviewing and deliberation on the questionnaire questions together with 4 pre-service elementary teachers. The questionnaire related to the writing of the science teaching and learning course plan consists of 8 questions. Preferred reference materials when writing the course plan, the level of interest in learning, the success or failure of the science course plan and class, the science preferred model, the evaluation method in unit time, and the science teaching and learning One's own efforts to write the course plan, the contents of this course are the science faculty. It is composed of the preparation of the learning process plan and how helpful it is to the class. The results of this study are as follows. First, it was found that elementary school pre-service elementary teachers preferred teacher guidance the most when drafting science teaching and learning curriculum plans. Second, it is recognized that the development stage is very important in the teaching and learning stage of the science department. Third, Pre-service elementary teachers believe that the science and teaching and learning process plan has a high correlation with the success of the class. Fourth, it was said that the student's level, the teacher's ability, and the appropriate lesson plan had the most influence on the class. Fifth, it was found that pre-service elementary teachers prefer the inquiry learning class model. Sixth, it was found that reports and activity papers were preferred for evaluation in 40-minute classes. Seventh, it was stated that the teaching and learning process plan is highly related to the class, so it will be studied and studied diligently. Eighth, the method of writing a science teaching and learning course plan based on the instructional design principle is interpreted as very beneficial.

Enhancing Science Self-efficacy and Science Intrinsic Motivation through Simulated Teaching-learning for Pre-service Teachers (탐구 기반 모의 수업 실연이 예비 교사들의 과학적 자기 효능감, 과학 내재 동기에 미치는 영향)

  • Lee, Hyundong
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.4
    • /
    • pp.560-576
    • /
    • 2023
  • The purpose of this investigation is to: (1) to derive an improvement factor for inquiry-based simulated teaching-learning in pre-service teacher training programs, and pre-service teachers practice simulated teaching that reflect the improvement factor, (2) to analyze the difference in science intrinsic motivation according to science self-efficacy and inquiry-based simulated teaching-learning experience. To achieve these goals, we recruited five elementary and secondary teachers as experts to help us develop an improvement factor based on expert interviews. Subsequently, third-year pre-service teachers of a university of education participated in our analysis of differences in science intrinsic motivation, according to their level of science self-efficacy and experience with inquiry-based simulated teaching-learning. Our methodology involved applying the analytic hierarchy process to expert interviews to derive improvement factor for inquiry-based simulated teaching-learning, followed by a two-way ANOVA to identify significant differences in science intrinsic motivation between groups with varying levels of science self-efficacy. We also conducted post-analysis through MANOVA statements. The results of our study indicate that inquiry-based simulated teaching-learning can be improved through activities that foster digital literacy, ecological literacy, democratic citizenship, and scientific inquiry skills. Moreover, small group activities and student-centered teaching-learning approaches were found to be effective in developing core competencies and promoting science achievements. Specifically, pre-service teachers prepared a teaching-learning course plan and inquiry-based simulated teaching-learning in seventh-grade in the Earth and Space subject area. Pre-service teachers' science intrinsic motivation analyze significant differences in all levels of science self-efficacy before and after simulated teaching-learning and significant difference in the interaction effect between simulated teaching-learning and scientific self-efficacy. Particularly, group with low scientific self-efficacy, the difference in science intrinsic motivation according to simulated teaching-learning was most significant. Teachers' scientific self-efficacy and intrinsic motivation are needed to improve science achievement and affective domains of students in class. Therefore, this study contributes to suggest inquiry-based simulated teaching-learning reflecting school practices from the pre-service teacher curriculum.

Risk Education and Educational Needs Related to Science and Technology: A Study on Science Teachers' Perceptions (중등 과학교사들이 생각하는 과학기술 관련 위험교육 실태와 교육 요구)

  • Jinhee Kim;Jiyeon Na;Yong Wook Cheong
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.1
    • /
    • pp.57-75
    • /
    • 2024
  • This study aimed to investigate the current state and educational needs of risk education related to science and technology as perceived by secondary science teachers. A survey was conducted with a total of 366 secondary science teachers. The results are as follows. First, There were more teachers who had not provided education on risks arising from science and technology in terms of risk perception, risk assessment, and risk management than those who had not. Global warming was the most common risk taught by teachers, followed by earthquakes, artificial intelligence, and traffic accidents. Second, teachers recognized that they lacked understanding that the achievement standards of the 2022 revised science curriculum include risks that may occur due to science and technology, but they thought they were prepared to teach. Third, teachers recognized that their understanding of risk perception was higher than that of risk management and risk assessment. Fourth, the experience of teachers in training on risk was very limited, with fewer having training in risk assessment and risk management compared to risk perception. The most common training experienced was in laboratory safety. Fifth, teachers recognized that their capabilities for the 10 goals of risk education were not high. Middle school teachers or teachers majoring in integrated science education evaluated their capabilities relatively highly. Sixth, many teachers thought it was important to address risks in school science education. They prioritized 'information use', 'decision-making skills', and 'influence of mass media', in that order, for importance and called for urgent education in 'action skills', 'information use', and 'influence of risk perception'. Seventh, as a result of deriving the priorities of education needs for each of the 10 goals of risk education, 'action skills', 'influence of risk perception', and 'evaluate risk assessment' were ranked 1st, 2nd, and 3rd, respectively.