• Title/Summary/Keyword: Settlement Structures

Search Result 341, Processing Time 0.021 seconds

A Study on Surface Settlement Prediction Method of Trenchless Technology Pipe Jacking Method (비개착 강관압입공법의 지표침하 예측방법 연구)

  • Chung, Jeeseung;Lee, Gyuyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.29-37
    • /
    • 2015
  • Non-excavation method is needed to secure the stability of existing structures during construction. Therefore, prediction of ground settlement is essential. Causes of settlement when using steel pipe indentation method are leading pipe-steel pipe gap, excessive excavation and soil-steel pipe friction etc. Also they are similar to the causes of settlement when using Shield TBM during construction. In this study, ground settlement during steel pipe indentation is predicted by the Gap Parameter Method and Volume Loss Method which are kinds of Shield TBM prediction Method. and compared with those of prediction methods by conducting field test. As a result, Volume Loss Prediction Method is the most similar to the field tests. However, It is needed to additional studies, such as decision of the factors and adaptability for total settlement predictions of non-excavation method.

Prediction of Settlement of SCP Composite Ground using Genetic Algorithm (유전자 알고리즘 기법에 근거한 SCP 복합지반의 침하 예측)

  • 박현일;김윤태;이형주
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.64-74
    • /
    • 2004
  • In order to accelerate the rate of consolidation settlement, to reduce settlement, and to increase bearing capacity for soft ground under quay wall, sand compaction pile method (SCP) has widely been applied. Improved ground is composite ground which is consisted of the sand pile-surrounding clayey soil. As caisson and upper structures are installed on SCP composite ground, the settlement is compositively occurred by elastic compression of sand compaction piles and also consolidation of the surrounding clay ground. In this study, the combined settlement model is proposed to predict the settlement of SCP composite ground in basis of elastic theory for sand compaction pile and consolidation theory for marine soft clay. Optimization technique was performed based on back-analysis so that real coded genetic algorithm was applied to estimate the parameters of the proposed settlement model. Case analysis was carried out for a domestic SCP composite ground to examine the applicability of the proposed prediction technique.

Numerical simulation of the effect of confining pressure and tunnel depth on the vertical settlement using particle flow code (with direct tensile strength calibration in PFC Modeling)

  • Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.433-446
    • /
    • 2020
  • In this paper the effect of confining pressure and tunnel depth on the ground vertical settlement has been investigated using particle flow code (PFC2D). For this perpuse firstly calibration of PFC2D was performed using both of tensile test and triaxial test. Then a model with dimention of 100 m × 100 m was built. A circular tunnel with diameter of 20 m was drillled in the middle of the model. Also, a rectangular tunnel with wide of 10 m and length of 20 m was drilled in the model. The center of tunnel was situated 15 m, 20 m, 25 m, 30 m, 35 m, 40 m, 45 m, 50 m, 55 m and 60 m below the ground surface. these models are under confining pressure of 0.001 GPa, 0.005 GPa, 0.01 GPa, 0.03 GPa, 0.05 GPa and 0.07 GPa. The results show that the volume of colapce zone is constant by increasing the distance between ground surface and tunnel position. Also, the volume of colapce zone was increased by decreasing of confining pressure. The maximum of settlement occurs at the top of the tunnel roof. The maximum of settlement occurs when center of tunnel was situated 15 m below the ground surface. The settlement decreases by increasing the distance between tunnel center line and measuring circles in the ground surface. The minimum of settlement occurs when center of circular tunnel was situated 60 m below the surface ground. Its to be note that the settlement increase by decreasing the confining pressure.

A Comparative Study between BPNN and RNN on the Settlement Prediction during Soft Ground Embankment (연약지반상의 성토시 침하예측에 대한 BPNN과 RNN의 비교 연구)

  • Kim, Dong-Sik;Chae, Young-Su;Kim, Young-Su;Kim, Hyun-Dong;Kim, Seon Hyung
    • Journal of the Society of Disaster Information
    • /
    • v.3 no.1
    • /
    • pp.37-53
    • /
    • 2007
  • Various difficult problems occur due to insufficient bearing capacity or excessive settlements when constructing roads or large complexes. Accurate predictions on the final settlement and consolidation time can help in choosing the ground improvement method and thus enables to save time and expense of the whole project. Asaoka's method is probably the most frequently used for settlement prediction which are based on Terzaghi's one dimensional consolidation theory. Empirical formulae such as Hyperbolic method and Hoshino's method are also often used. However, it is known that the settlement predicted by these methods do not match with the actual settlements. Furthermore these methods cannot be used at design stage when there is no measured data. To find an elaborate method in predicting settlement in embankments using various test results and actual settlement data from domestic sites, Back-Propagation Neural Network(BPNN) and Recurrent Neural Network(RNN) were employed and the most suitable model structures were obtained. Predicted settlement values by the developed models were compared with the measured values as well as numerical analysis results. Analysis of the results showed that RNN yielded more compatible predictions with actual data than BPNN and predictions using cone penetration resistance were closer to actual data than predictions using SPT results. Also, it was found that the developed method were very competitive with the numerical analysis considering the number of input data, complexity and effort in modelling. It is believed that RNN using cone penetration test results can make a highly efficient tool in predicting settlements if enough field data can be obtained.

  • PDF

Inflence of nearby structures in braced excavation (버팀굴착에서 인접 구조물의 영향평가)

  • 유일형;김형탁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.139-148
    • /
    • 1994
  • Rapid industrialization and urbanization caused by the high economic growth of the country requires optimization of land usage as well as the expansion of underground space. Therefore the construction of large and deep basements is inevitable in built up areas where the braced excavation for earth retaining structures may create many problems such as settlement and damages of nearby buildings and underground utilities. In this work, some of major influential factors concerning the stability of braced excavation are investigated and the results are compared with the field observation results. The ground water table, applied strut forces, horezontal wall displacement, infilling materials in the rock joints were found to be the most critical factors influencing the stability of braced walls constructed in the layered ground. Magnituide and type of the wall deformation was closely related to the pattern of the surface settlement. The stability of braced walls are described in terms of strut forces.

  • PDF

Urban Excavation and Observational Method (도심지 지하굴착 및 정보화 시공)

  • Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.3-14
    • /
    • 2005
  • Reliable predictions of the movement of earth retaining structures and the ground adjacent to braced walls in urban excavation are often difficult due to many variable factors. The ground settlement and the damage of adjacent structures in urban excavation has been an important issue. Therefore, the stability of the adjacent structures must be secured with the excavation support and research on the protection of adjacent structure is necessary. This study showed an urban excavation case and introduce observation method for case of damage behavior in urban excavation.

  • PDF

Suggestion of the Settlement Estimation Method for Granular Compaction files Considering Lateral Deformations (횡방향 변형을 고려한 조립토 다짐말뚝의 침하량 평가기법 제안)

  • Hwang Jung-Soon;Kim Hong-Taek;Kim Seung-Wook;Koh Yong-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2005
  • In cases of the loosely accumulated ground and soft clayey soils, the settlement criterion usually governs in evaluating the stability of structures. The settlement is also a dominant factor to control the design of granular compaction piles mainly applied to the reinforcement of foundation structures in soft ground. In the previous studies, settlement behaviors of granular compaction piles have generally been analyzed with an evaluation of the settlement reduction factor based on the load-sharing ratio and the replacement ratio. In this approach, however, since the reinforced ground with granular compaction piles is simplified as the composite ground, only the difference of a relative vertical strength between piles and soils is taken into account without reflecting lateral behaviors of granular compaction piles. In the present study, the method of estimating the settlement of granular compaction piles is proposed by synthetically considering a vertical strength of the ground, lateral behaviors of granular compaction piles, the strength of pile materials, a pile diameter, and an installation distance of the pile. Further, far the verification of a validity of the proposed method, predicted settlements are compared with results from previous studies. In addition, parametric studies are performed together with detailed analyses of relevant design parameters.

Comparative Analysis of Final Consolidation Settlement by Degree of Consolidation in Soft Soils of Yeongam-Haenam Areas (영암-해남 연약지반의 압밀도 변화에 따른 최종침하량 비교분석)

  • Kim, Tae-Wan;Nam, Geon;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.25-33
    • /
    • 2023
  • To effectively improve soft soils, it is necessary to perform ground behavior characteristics and stability management through measurement activities when embankment of structures on soft soils is conducted. However, there are many differences between the actual ground behavior and the initial design plan. To address this issue, this study analyzed the measured settlement in the Yeongam-Haenam areas using the Hyperbolic method to predict the settlement based on the measurement data. From the completion time of the embankment in the target area, the final settlement was predicted through the change in the degree of consolidation by the measurement period. Furthermore, the final settlement according to the change in degree of consolidation was compared and analyzed through finite element analysis and field measurement.

Analysis of settlements of space frame-shear wall-soil system under seismic forces

  • Jain, D.K.;Hora, M.S.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1255-1276
    • /
    • 2015
  • The importance of considering soil-structure interaction effect in the analysis and design of RC frame buildings is increasingly recognized but still not penetrated to the grass root level owing to various complexities involved. It is well established fact that the soil-structure interaction effect considerably influence the design of multi-storey buildings subjected to lateral seismic loads. The shear walls are often provided in such buildings to increase the lateral stability to resist seismic lateral loads. In the present work, the linear soil-structure analysis of a G+5 storey RC shear wall building frame resting on isolated column footings and supported by deformable soil is presented. The finite element modelling and analysis is carried out using ANSYS software under normal loads as well as under seismic loads. Various load combinations are considered as per IS-1893 (Part-1):2002. The interaction analysis is carried out with and without shear wall to investigate the effect of inclusion of shear wall on the total and differential settlements in the footings due to deformations in the soil mass. The frame and soil mass both are considered to behave in linear elastic manner. It is observed that the soil-structure interaction effect causes significant total and differential settlements in the footings. Maximum total settlement in footings occurs under vertical loads and inner footings settle more than outer footings creating a saucer shaped settlement profile of the footings. Each combination of seismic loads causes maximum differential settlement in one or more footings. Presence of shear wall decreases pulling/pushing effect of seismic forces on footings resulting in more stability to the structures.

An Analysis of Stresses and Behaviors in the Geotextile-Reinforced Soil Structures (토목섬유 보강 구조물의 응력 및 거동 해석)

  • 고홍석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.94-108
    • /
    • 1988
  • The use of geotextile as reinforcing materials in soil structures has become widespread throughout the world. Geotextile reinforcement has been used in retaining walls, roadbed, embankment stabilization and especially reinforcement of soft foundation, and so on, In the past, however, its design and construction have been performed empirically. In this study, laboratory model tests were carried out in order to investigate the effects of geotextile rein- forcement on vertical and horizontal displacement and other characteristics in soft founda- tions. The experiments were executed in eight treatments ;no geotextile between embank - ment and subsoils, and seven geotextiles with different tensile strength. And such factors as the loading conditions, the tensile strength of geotextiles, the ingredient of geotextiles and the elapsed time were investigate in this study. And the analytical method were executed in order to study the stress and behavior of geotextile - reinforced soil structure by the nonlinear elasto - plastic finite element model. The following conclusions were drawn from this study. 1. Geotextile reinforcement reduced the effects of banking loads on subsoils more effectively with the increase of their tensile strength. 2. As the tensile strength of geotextiles was increase, the rate of the initial vertical disp - lacements of loading plate was reduced inverse proportional to loads, Rowever, the effect of loading was reduced when the loads exceed a certain limits, 3. The effect of reinforcement of nonwoven geotextile was 1.5-4.5 times larger than that of the woven geotextile with equivalent tensile strength. 4. The increased bearing capacity and the reduced settlement are proportioned as the tensile strength of geotextile. 5. The settlement at the long time loading were developed almost all, were completed after 10 days and the additional settlement were not developed since then. 6. The nonlinear elasto - plastic finite element method are accurate to predict the stresses and behayior of geotextile - reinforced soil structures.

  • PDF