• Title/Summary/Keyword: Settlement Structures

Search Result 341, Processing Time 0.026 seconds

A Study on Evaluating Damage to Railway Embankment Caused by Liquefaction Using Dynamic Numerical Analysis (동적수치해석을 이용한 액상화로 인한 철도제방 피해도 평가법 개발 연구)

  • Ha, Ik-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.149-161
    • /
    • 2022
  • This study selected the indexes for evaluating the damage of the railway embankments due to liquefaction from the earthquake damage cases of railway embankments. The study correlated the selected indexes and the settlement of the embankment crest from the dynamic numerical analysis. Further, the correlation was used to develop a method for evaluating the liquefaction damage to the railway embankment. The damage cases and damage types were analyzed, and referring to the liquefaction damage assessment method for other structures, the embankment height (H), the non-liquefiable layer thickness (H1), and the liquefaction potential index were selected as indexes for evaluating the damage. The study performed dynamic effective stress analyses on the railway embankment, and the PM4-Sand model was applied as the constitutive liquefaction model for the embankment foundation ground. The model's validity was first verified by comparing it with the existing dynamic centrifugal model test results performed on the railway embankment. Nine sites where the foundation ground can be liquefied were selected from the data of 549 embankments of the Honam High-speed Railway in Korea. Further, dynamic numerical analyses using four seismic waves as input earthquake load were performed for the selected site sections. The numerical analysis results confirmed the correlation between the evaluation indexes and the embankment crest settlement. A method for efficiently evaluating the damage to the embankment due to liquefaction was proposed using the chart obtained from this correlation.

Applications of Improved Low-Flow Mortar Type Grouting Method for Road Safety and Constructability in Dangerous Steep Slopes (급경사지 붕괴 위험지역의 도로 안전 및 시공성을 고려한 개선된 저유동 몰탈형 그라우팅공법 적용성 분석)

  • Choi, Gisung;Kim, Seokhyun;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.409-415
    • /
    • 2020
  • Low-flow mortar injection method grouting technology was selected and the traffic area was preserved as much as possible in order to secure safety for road traffic when the outflow and subsidence of landfill occurred due to ground-water, and etc. In particular, the current existing method was newly improved since there are risks of damage such as hydraulic fracturing at the lower part of the road, spilling of soil particles on steep slopes, and bumps on the road due to excessive injection pressure during construction. This study was carried out at the site of reinforcement work on the road as a maintenance work for the danger zone for collapse of the steep slope of the 00 hill, which was ordered from the 00 city 00 province. The improved low-flow mortar type grouting method adopted a new automated grouting management system and especially, it composites the method for grouting conditions decision by high-pressure pre-grouting test and injection technology by AGS-controlled and studied about grouting effect analysis by using new technology. By applying the improved low-flow mortar type grouting method, it was possible to lay the groundwork for road maintenance work such as the prevention of subsidence of old roads, uneven subsidence of buildings and civil engineering structures, and of soil leakage of ground-water spills. Furthermore, the possibility of application on future grouting work not only for just construction that prevents subsidence of old roads but also for various buildings and civil engineering structures such as railroads, subways, bridges, underground structures, and boulder stone and limestone areas was confirmed.

Influences of Grouting Pressure of Microcement to Upper Structures (지반보강용 마이크로시멘트의 주입압이 상부구조물에 미치는 영향)

  • Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.70-77
    • /
    • 2010
  • Microcement grouting and micro pile are frequently used for ground modification during tunnel construction. The influence of grouting pressure of microcement grouting and micro pile to the existing bridge which is directly over the constructing tunnel is investigated. Three dimensional seepage flow-structure interactive analysis considering firm water pressure with full stages of construction including the construction of upper bridge, microcement grouting, micro pile and tunnel is performed. The settlement and tilting of the pier of existing bridge violate the design code and the reaction of the bridge are highly increased after grouting. The stress of tunnel bracings such as rockbolt and shotcrete also exceed the limit of the code. The pressure of microcement grouting is confined by bedrock and transmit to the surrounded soil and the upper bridge. Microcement grouting needs mid-high pressure to penetrate through weak fault plane and the pressure greatly influence the safety of the upper structure. It is important to decide and care the grouting pressure to improve weak fault plane directly under the existing structures and the pressure of microcement grouting should be considered in underground analysis.

Development of Automated 3D Modeling System to Construct BIM for Railway Bridge (철도 교량의 BIM 구축을 위한 3차원 모델 생성 자동화 시스템 개발)

  • Lee, Heon-Min;Kim, Hyun-Seung;Lee, Il-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.267-274
    • /
    • 2018
  • For successful BIM settlement, it is a key technic for engineer to design structures in the 3-dimensional digital space and to work out related design documents directly. Lately many BIM tool has been released and each supports their 3-dimensional object libraries. But it is not easy to apply those libraries to design transportation infra structures that were placed along the route(3-dimensional line). Moreover, in case of design changes, it is so difficult to reflect those changes with the integrated model that was assembled by them. Because of they were developed without consideration for redundancy of parameters between objects that were placed nearby or were related each other. In this paper, a method to develop module for modeling and placing 3-dimensional object for transportation infra structures is presented. The modules are employed by a parametric method and can deal with design changes. Also, for a railroad bridge, through developing user interface of the integrated 3-dimensional model that was assembled by those modules the applicability of them was reviewed.

A Study on the Cultivation Processes and Settlement Developments on the Mangyoung River Valley (만경강유역의 개간과정과 취락형성발달에 관한 연구)

  • NamGoong, Bong
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.2
    • /
    • pp.37-87
    • /
    • 1997
  • As a results of researches on the cultivation processes and settlement developments on the Mangyoung river valley as a whole could be have four 'Space-Time Continuity' through a [Origin-Destination] theory model. On a initial phases of cultivation, the cultivation process has been begun at mountain slopes and tributory plains in upper part of river-basin from Koryo Dynasty to early Chosun Dynasty. At first, indigenous peasants burned forests on the mountain slopes for making 'dryfield' for a cereal crops. Following population increase more stable food supply is necessary facets of life inducing a change production method into a 'wetfield' in tributory plains matching the population increase. First sedentary agriculture maybe initiated at this mountain slopes and tributory plains on upper part of river basin through a burning cultivation methods. Mountain slopes and tributory plains are become a Origin area in cultivation processes. It expanded from up to down through the valleys with 'a bits of land' fashion in a steady pace like a terraced fields expanded with bit by bit of land to downward. They expanded their land to the middle part of river basin in mid period of Chosun Dynasty with dike construction techniques on the river bank. Lower part of river cultivated with embankment building techniques in 1920s and then naturally expanded to the tidal marshes on the estuaries and river inlets of coastal areas. 'Pioneer fringes' are consolidated at there in modern times. Changes in landscapes are appeared it's own characters with each periods of time. Followings are results of study through the Mangyoung river valley as a whole. (1) Mountain slopes and tributory plains on the upper part of river are cultivated 'dryfields' by indigenous peasants with Burning cultivation methods at first and developed sedentary settlements at the edges of mountain slopes and on the river terrace near the fields. They formed a kind of 'periphery-located cluster type' of settlement. This type of settlement are become a prominant type in upper part of river basin. 'Dryfields' has been changed into a 'wetfields' at the narrow tributory plains by increasing population pressure in later time. These wetfields are supplied water by Weir and Ponds Irrigation System(제언수리방법). Streams on the tributory plains has been attracted wetfields besides of it and formed a [water+land] complex on it. 'Wetfields' are expanded from up to downward with a terraced land pattern(adder like pattern, 붕전) according to the gradient of valley. These periphery located settlements are formed a intimate ecological linkage with several sets of surroundings. Inner villages are expanded to Outer villages according to the expansion of arable lands into downward. (2) Mountain slopes and tributory plains expanded its territory to the alluvial deposited plains on the middle part of river valley with a urgent need of new land by population increase. This part of alluvial plains are cultivated mainly in mid period of Chosun Dynasty. Irrigation methods are changed into a Dike Construction Irrigation method(천방수리방법) for the control of floods. It has a trend to change the subjectives of cultivation from community-oriented one who constructed Bochang along tributories making rice paddies to local government authorities who could be gather large sums of capitals, techniques and labours for the big dike construction affairs. Settlements are advanced in the midst of plains avoiding friction of distances and formed a 'Centrallocated cluster type' of settlements. There occured a hierarchical structures of settlements in ranks and sizes according merits of water supply and transportation convenience at the broad plains. Big towns are developed at there. It strengthened a more prominant [water+land] complex along the canals. Ecological linkages between settlements and surroundings are shaded out into a tiny one in this area. (3) It is very necessary to get a modern technology of flood control at the rivers that have a large volume of water and broad width. The alluvial plains are remained in a wilderness phase until a technical level reached a large artificial levee construction ability that could protect the arable land from flood. Until that time on most of alluvial land at the lower part of river are remained a wilderness of overgrown with reeds in lacks of techniques to build a large-scale artificial levee along the riverbank. Cultivation processes are progressed in a large scale one by Japanese agricultural companies with [River Rennovation Project] of central government in 1920s. Large scale artificial levees are constructed along the riverbank. Subjectives of cultivation are changed from Korean peasants to Japanese agricultural companies and Korean peasants fell down as a tenant in a colonial situation of that time in Korea. They could not have any voices in planning of spatial structure and decreased their role in planning. Newly cultivated lands are reflected company's intensions, objectives and perspectives for achieving their goals for the sake of colonial power. Newly cultivated lands are planned into a regular Rectangular Block settings of rice paddies and implanted a large scale Bureaucratic-oriented Irrigation System on the cultivated plains. Every settlements are located in the midst of rice paddies with a Central located Cluster type of settlements. [water+land] complex along the canal system are more strengthened. Cultivated space has a characters of [I-IT] landscapes. (4) Artificial levees are connected into a coastal emnankment for a reclamation of broad tidal marshes on the estuaries and inlets of rivers in the colonial times. Subjectives of reclamation are enlarged into a big agricultural companies that could be acted a role as a big cultivator. After that time on most of reclamation project of tidal marshes are controlled by these agricultural companies formed by mostly Japanese capitalists. Reclaimed lands on the estuaries and river inlets are under hands of agricultural companies and all the spatial structures are formed by their intensions, objectives and perspectives. They constructed a Unit Farming Area for the sake of companies. Spatial structures are planned in a regular one with broad arable land for the rice production of rectangular blocks, regular canal systems and tank reservoir for the irrigation water supply into reclaimed lands. There developed a 'Central-located linear type' of settlements in midst of reclaimed land. These settlements are settled in a detail program upon this newly reclaimed land at once with a master plan and they have planned patterns in their distribution, building materials, location, and form. Ecological linkage between Newly settled settlemrnts and its surroundings are lost its colours and became a more artificial one by human-centred environment. [I-IT] landscapes are become more prominant. This region is a destination area of [Origin-Destination] theory model and formed a 'Pioneer Fringe'. It is a kind of pioneer front that could advance or retreat discontinously by physical conditions and socio-cultural conditions of that region.

  • PDF

Numerical Modeling of Reinforced Soil with Waste Tirecell (타이어셀로 보강된 지반의 거동에 대한 수치모델링)

  • Yoon, Yeowon;Kyeon, Kwangsoo;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.5-12
    • /
    • 2008
  • In this research, the plate load tests on sand which is reinforced by Tirecell mat were simulated by finite element method (FEM). Tirecell mat made by waste tires has the same function and similar shape to Geocell for soil reinforcement and it can also be used for civil engineering structure. The results were compared with those of field plate load tests for evaluation of suitability of modeling method. From the comparison of both results, it can be seen that the settlements by FEM were very similar to test results with small margin under the ultimate bearing capacity. For the ultimate bearing capacities of two results, difference was very small. After the confirmation of the modelling, reinforcing effects with variation of cover depth and number of reinforcement layers by Tirecell were analyzed additionally. Reinforcing effect decreases with increasing soil cover depth, and this is similar to previous test results by soil cover depth. As the number of reinforcing layers increased, reinforcing effect increased. However at more than 2 reinforcing layers, reinforcing effect was negligible. In conclusion, the modeling method in this research might be used for analysis of reinforced structures using Tirecell mat.

  • PDF

Displacement Measuring Lab. Test of Reinforced-Soil Retaining Wall Block using 3D Digital Photogrammetry Image (수치사진영상을 이용한 보강토옹벽블록의 변위계측 실내시험)

  • Han, Jung-Geun;Jeong, Young-Woong;Hong, Ki-Kwon;Cho, Sam-Deok;Kim, Young-Seok;Bae, Sang-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.45-52
    • /
    • 2006
  • The collapsed cases are more and more increasing at the large scaled structures because of increasing of the risk due to natural disasters. The measuring instrument such as inclinometer, total station on reinforced-soil retaining wall has been used that displacement, settlement for stability assessment, maintenance and management of it. But because these has gotten many instability measuring factors for stability analysis of RRW, new system needs to complement disadvantage of existing system. In this study, we considered a application of Visual Monitoring System (VMS) to measure a displacement in face of wall through Lab. test about block assembly of segmental retaining wall during load test.

  • PDF

Behaviors of Lightweight Foamed Soils Considering Underwater Curing and Water Pressure Conditions (수중양생 및 수압조건을 고려한 경량기포혼합토의 거동)

  • Yoon Gil-Lim;You Seung-Kyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2005
  • Lightweight Foamed Soil (LWFS) could be the substitute of normal soils used in backfill to earth structures and embankment materials far soft ground improvement in port and harbor project because of its effectiveness in settlement reduction and earth pressure decrease due to its lightness. A series of triaxial and unconfined compression tests were performed to investigate behaviors of LWFS composed of dredged soils, cement and air foam, and cured at underwater conditions. The density of LWFS will increase if LWFS is cured at underwater conditions because high water pressure makes air foam disappear or demolish during the curing compared with LWFS cured at normal air conditions. This paper is to find the mechanical behaviors of LWFS cured at seawater depth of 5.0 m and 10.0 m, respectively, which simulates underwater curing conditions by underwater pressure simulator chamber developed during this study. In addition, new normalized factor formula, which takes account of mixing design conditions determining compressive strength of LWFS, was proposed to consider mixing design factor fur LWFS.

Centrifuge Model Tests on Characteristics in Forced Replacement Method for Soft Ocean Ground to Build Coastal Structures (해안구조물 축조를 위한 해양연약지반의 강제치환 특성에 관한 원심모형실험)

  • Park, Byung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.42-48
    • /
    • 2006
  • This paper shows theresults of centrifuge model experiments to investigate the behavior of a replacement method in dredged and reclaimed ground. For this experimental work, centrifuge model tests were carried out to investigate the behavior of a replacement method in soft clay ground. Basic soil property tests were performed to find the mechanical properties of clay soil sampled from the southern coast of Korea, which was used for the ground material in the centrifuge model tests. The reconstituted clay ground of the model was prepared by applying reconsolidntion pressure in a 1 g condition with a specially built model container. Centrifuge model tests were carried out under the artificially accelerated gravitational level of 50 g. Replacement material of lead with a certain degree of angularity was used and placed until the settlement of the replacement material embankment reached a state of equilibrium. Vertical displacement of the replacement material was monitored during tests. The depth and shape of the replacement, especially the slope of the penetrated material and the water content of the clay ground were measured after finishing tests. Model tests for investigating the stability of an embankment after backfilling were also performed to simulate the behavior of a dike treated with replacement and backfilled with sandy material. As a result of the centrifuge model test, the behavior of the replacement, the mechanism of the replacement material being penetrated into clay ground, and the depth of the replacement were evaluated.

Characterization of railway substructure using a hybrid cone penetrometer

  • Byun, Yong-Hoon;Hong, Won-Taek;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1085-1101
    • /
    • 2015
  • Changes in substructure conditions, such as ballast fouling and subgrade settlement may cause the railway quality deterioration, including the differential geometry of the rails. The objective of this study is to develop and apply a hybrid cone penetrometer (HCP) to characterize the railway substructure. The HCP consists of an outer rod and an inner mini cone, which can dynamically and statically penetrate the ballast and the subgrade, respectively. An accelerometer and four strain gauges are installed at the head of the outer rod and four strain gauges are attached at the tip of the inner mini cone. In the ballast, the outer rod provides a dynamic cone penetration index (DCPI) and the corrected DCPI (CDCPI) with the energy transferred into the rod head. Then, the inner mini cone is pushed to estimate the strength of the subgrade from the cone tip resistance. Laboratory application tests are performed on the specimen, which is prepared with gravel and sandy soil. In addition, the HCP is applied in the field and compared with the standard dynamic cone penetration test. The results from the laboratory and the field tests show that the cone tip resistance is inversely proportional to the CDCPI. Furthermore, in the subgrade, the HCP produces a high-resolution profile of the cone tip resistance and a profile of the CDCPI in the ballast. This study suggests that the dynamic and static penetration tests using the HCP may be useful for characterizing the railway substructure.