• 제목/요약/키워드: Set-valued functions

검색결과 54건 처리시간 0.015초

INVERSION OF THE CLASSICAL RADON TRANSFORM ON ℤnp

  • Cho, Yung Duk;Hyun, Jong Yoon;Moon, Sunghwan
    • 대한수학회보
    • /
    • 제55권6호
    • /
    • pp.1773-1781
    • /
    • 2018
  • The Radon transform introduced by J. Radon in 1917 is the integral transform which is widely applicable to tomography. Here we study the discrete version of the Radon transform. More precisely, when $C({\mathbb{Z}}^n_p)$ is the set of complex-valued functions on ${\mathbb{Z}}^n_p$. We completely determine the subset of $C({\mathbb{Z}}^n_p)$ whose elements can be recovered from its Radon transform on ${\mathbb{Z}}^n_p$.

PROPERTIES OF CAUSALLY CONTINUOUS SPACE-TIME

  • Kim, Jong-Chul;Kim, Jin-Hwan
    • 대한수학회보
    • /
    • 제25권2호
    • /
    • pp.195-201
    • /
    • 1988
  • In general relativity, analyzing causality is central to the study of black holes, to cosmology, and to each of the major recent mathematical theorems. By causality we refer to the general question of which points in a space-time can be joined by causal curves; relativistically which events can influence (be influenced by) a given event. Various causality conditions have been developed for space-times of the problems associated with examples of causality violations (2, 4). Causally continuous space-times were defined by Hawking and Sachs (5). Budic and Sachs (3) established causal completion. A metrizable topology on the causal completion of a causally continuous space-time was studied by Beem(1). Recently the region of space-time where causal continuity is violated was studied by Ishikawa (6) and Vyas and Akolia (8). In this paper we show characterization for reflectingness in terms of continuity of set valued functions. We investigate some properties of the region related to a causally continuous space-time where distinguishingness is violated, and characterize the chronology condition in terms of distinguishing-violated region.

  • PDF

RANDOMLY ORTHOGONAL FACTORIZATIONS OF (0,mf - (m - 1)r)-GRAPHS

  • Zhou, Sizhong;Zong, Minggang
    • 대한수학회지
    • /
    • 제45권6호
    • /
    • pp.1613-1622
    • /
    • 2008
  • Let G be a graph with vertex set V(G) and edge set E(G), and let g, f be two nonnegative integer-valued functions defined on V(G) such that $g(x)\;{\leq}\;f(x)$ for every vertex x of V(G). We use $d_G(x)$ to denote the degree of a vertex x of G. A (g, f)-factor of G is a spanning subgraph F of G such that $g(x)\;{\leq}\;d_F(x)\;{\leq}\;f(x)$ for every vertex x of V(F). In particular, G is called a (g, f)-graph if G itself is a (g, f)-factor. A (g, f)-factorization of G is a partition of E(G) into edge-disjoint (g, f)-factors. Let F = {$F_1$, $F_2$, ..., $F_m$} be a factorization of G and H be a subgraph of G with mr edges. If $F_i$, $1\;{\leq}\;i\;{\leq}\;m$, has exactly r edges in common with H, we say that F is r-orthogonal to H. If for any partition {$A_1$, $A_2$, ..., $A_m$} of E(H) with $|A_i|=r$ there is a (g, f)-factorization F = {$F_1$, $F_2$, ..., $F_m$} of G such that $A_i\;{\subseteq}E(F_i)$, $1\;{\leq}\;i\;{\leq}\;m$, then we say that G has (g, f)-factorizations randomly r-orthogonal to H. In this paper it is proved that every (0, mf - (m - 1)r)-graph has (0, f)-factorizations randomly r-orthogonal to any given subgraph with mr edges if $f(x)\;{\geq}\;3r\;-\;1$ for any $x\;{\in}\;V(G)$.

LARGE TIME ASYMPTOTICS OF LEVY PROCESSES AND RANDOM WALKS

  • Jain, Naresh C.
    • 대한수학회지
    • /
    • 제35권3호
    • /
    • pp.583-611
    • /
    • 1998
  • We consider a general class of real-valued Levy processes {X(t), $t\geq0$}, and obtain suitable large deviation results for the empiricals L(t, A) defined by $t^{-1}{\int^t}_01_A$(X(s)ds for t > 0 and a Borel subset A of R. These results are used to obtain the asymptotic behavior of P{Z(t) < a}, where Z(t) = $sup_{u\leqt}\midx(u)\mid$ as $t\longrightarrow\infty$, in terms of the rate function in the large deviation principle. A subclass of these processes is the Feller class: there exist nonrandom functions b(t) and a(t) > 0 such that {(X(t) - b(t))/a(t) : t > 0} is stochastically compact, i.e., each sequence has a weakly convergent subsequence with a nondegenerate limit. The stable processes are in this class, but it is much larger. We consider processes in this class for which b(t) may be taken to be zero. For any t > 0, we consider the renormalized process ${X(u\psi(t))/a(\psi(t)),u\geq0}$, where $\psi$(t) = $t(log log t)^{-1}$, and obtain large deviation probability estimates for $L_{t}(A)$ := $(log log t)^{-1}$${\int_{0}}^{loglogt}1_A$$(X(u\psi(t))/a(\psi(t)))dv$. It turns out that the upper and lower bounds are sharp and depend on the entire compact set of limit laws of {X(t)/a(t)}. The results extend to random walks in the Feller class as well. Earlier results of this nature were obtained by Donsker and Varadhan for symmetric stable processes and by Jain for random walks in the domain of attraction of a stable law.

  • PDF