• Title/Summary/Keyword: Sesame (Sesamum indicum)

Search Result 108, Processing Time 0.027 seconds

Quality characteristics of sesame oil obtained from imported sesame (Sesamum indicum) (참깨의 수입 형태에 따른 참기름의 품질 특성)

  • Choi, Ji-Young;Bae, Suin;Kim, Jiyoon;Kim, Jungsoo;Moon, Kwang-Deog
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.309-315
    • /
    • 2019
  • In this study, the physicochemical characteristics of imported whole sesame oil (WS; WS1, WS2), imported sesame powder oil (SP; SP1, SP2), sesame oil mixed with imported whole sesame and sesame powder (WSP; WSP1, WSP2) were analyzed and their quality characteristics were compared according to the imported raw material type. $L^*$ and $b^*$ values of WS1 were the lowest and the browning index was significantly high. WS2 showed contrasting results. The redness of sesame oil was high due to its high acid value. The correlation value showed a low acid value as the content of saturated fatty acid was high. SP showed low values for antioxidant property and overall preference. The overall preference score of sensory evaluation showed the highest positive correlation with the score, suggesting that SP lacked the unique fragrance. Therefore, SP lacked the specific aroma and antioxidant property.

Growth Inhibitory Effects of Sesamolin from Sesame Seeds on Human Leukemia HL-60 Cells (참깨에서 분리된 세사몰린의 백혈병 세포주 HL-60 생장억제 효과)

  • Kim, Kwan-Su;Kang, Sam-Sik;Ryu, Su-Noh
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.3 s.134
    • /
    • pp.237-241
    • /
    • 2003
  • This study was carried out to test the growth inhibitory effects of sesamolin obtained from sesame seeds. Sesamolin inhibited the growth of human leukemia HL-60 cells in cultures and the synthesis of macromolecules in dose- and time-dependent manners. Sesamolin in the $60{\sims}100\;{\mu}g/ml$ range was cytostatic. At concentrations greater than $200\;{\mu}g/ml$ sesamolin was cytocidal to HL-60 cells and at $60\;{\mu}g/ml$ inhibited the synthesis of DNA, RNA and protein in HL-60 cells by 35.1, 6.1, and 5.3%, whereas at $200\;{\mu}g/ml$ these inhibitions were 86.8%, 81.5% and 96.7%, respectively. The inhibitory effect of sesamolin on DNA synthesis was irreversible.

Effect of Capsule Position on the Seed Germination and Juvenile Growth of Sesame (Sesamum indicum L.) (삭과의 착생부위(着生部位)가 참깨종자(種子)의 발아(發芽) 및 초기생육(初期生育)에 미치는 영향(影響))

  • Kim, Choong Soo
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.1
    • /
    • pp.223-230
    • /
    • 1982
  • To obtain the information on the germination and initial growth of the sesame, the seed of 6 sesame cultivars obtained from upper and lower position of plants were seeded and the results on the germination and initial growth were summarized as follows; 1. When the seeding time was delayed, the days to flower of all sesame cultivars were significantly decreased. And the shortening rate of days to flower by delaying seeding time showed significant differences among the sesame cultivars. 2. At all cultivars excluding IS 103, the germination percentage of the seeds obtained from lower position of sesame plant was significantly higher than those from upper position. 3. Germination percentage of IS 103 seeds from lower position of sesame plant was 20.0% at petri dish experiment and 75.0% at pot experiment and those from upper position of the stem was 17.0% at petri dish experiment and 72.5% at pot experiment, respectively. 4. The germination speed of all cultivars showed a same tendency as germination percentage, but the germination speed of cultivars at pot experiment was higher than those at petri dish experiment. 5. The sesame seedlings from lower position seed were increased in stem length, root length, leaf length and fresh weight than those from upper position seed. The germination percentage and the initial growth showed significant differences by the seed weight in same cultivar, however did not show any varietal differences.

  • PDF

Residue Analysis to Establish an Index for the Safety Use of Propineb (Propineb의 안전사용(安全使用) 기준(基準) 설정(設定)을 위한 잔류분석(殘留分析))

  • Choi, Won-Seog;Yang, Jae-Eui;Han, Dae-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.3
    • /
    • pp.209-214
    • /
    • 1992
  • Residue of Propineb in Sesame(Sesamum indicum L.) seed was determined to establish an index for the safety use of Propineb to Sesame. Evaluation was made on residual concentration of Propineb in Sesame seed as a function of application frequency and date when the mixed formulations of Propineb(56%), protectant fungicide, and Oxadixyl(8%), contact fungicide, were sprayed into Sesame leaves. Level of Propineb treatment was $0.028g/m^2$ with various combinations of application time from three to sixty days before harvest. Results are summarized as followings. 1. Recovery percentages of Propineb from Sesame seed were ranged from 84 to 96, and the minimum detectable limit of Propineb with the method employed in this experiment was 0.03mg/kg. 2. Residues of Propineb in Sesame seed were in the ranges of 0.14 to 1.38mg/kg, varying with frequency and date of Propineb application. 3. Residues of Propineb increased as increasing application frequency of Propineb or as being application date closer to harvest time. 4. Residue of Propineb in Sesame seed was decreased with time, showing to be fitted to the first-order kinetics. 5. Residues of Propineb in Sesame seen were, irresepective of treatments, lower than 2mg/kg, the Maximum Residue Limit(MRL) established by FAO/WHO. 6. Half-life of Propineb determined in this experiment was ranged from 12 to 16 days.

  • PDF

Characterizations of Yields and Seed Components of Sesame (Sesamum indicum L.) as Affected by Soil Moisture from Paddy Field Cultivation

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sanghun;Kim, Sung-Up;Oh, Eunyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.369-382
    • /
    • 2017
  • Accurate and optimal water supply to cereal crop is critical in growing stalks and producing maximum yields. Recently, upland crops are cultivated in paddy field soils to reduce overproduced rice in Korea. In order to increase productivity of cereal crops in paddy fields which have poor percolation and drainage properties, it is necessary to fully understand crop response to excessive soil water condition and management of soil drainage system in paddy field. The objectives of this study were to investigate effects of excessive soil water to sesame growth and to quantify stress response using groundwater levels. Two cultivars of sesame were selected to investigate; Gunbak and Areum. These sesames were planted in paddy fields located in Miryang, Gyeongnam with different soil drainage levels and drainage systems. The experiment site was divided into two plots by drainage class; very poorly and somewhat poorly drained. Two different drainage systems were applied to alleviate excessive soil water in each plot: open ditch and pipe drainage system. Soil water contents and groundwater levels were measured every hour during growing season. Pipe drainage system was significantly effective to alleviate wet injury for sesame in paddy fields. Pipe drainage system decreased average soil moisture content and groundwater level during sesame cultivation. This resulted in greater yield and lignan contetns in sesame seeds than ones from open ditch system. Comparison between two cultivars, Gunbak had greater decrease in growth and yield by excessive soil water and high groundwater level than Areum. Seed components (lignan) showed decrease in seeds as soil water increased. When soil moisture content was greater than 40%, lignan content tended to decrease than ones from less soil moisture content. Based on these results, pipe drainage system would be more effective to reduce wet injury to sesame and increase lignan component in paddy field cultivation.

Current Status and Perspectives of Quality Improvement in Sesame (참깨 품질 연구의 현황과 문제점 및 전망)

  • Lee, Bong-Ho;Lee, Jung-Il;Park, Rae-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.s01
    • /
    • pp.86-97
    • /
    • 1988
  • Sesame(Sesamum indicum L.) is probably the most ancient oilseed crop known in the world. The seed of sesame is used in a variety of ways as food. The whole seed may be eaten raw, either roasted or parched, or fed to birds and stock. Sesame oil is used as a salad or cooking oil, in shortening, margarine and in the manufacture of soap. Minor uses are as a fixative in the perfume industry and formerly as a carrier for fatsoluble substances in pharmaceuticals such as penicillin. One of the minor constituents of sesame oil, sesamin, is used for its synergistic effect in pyrethrin insecticides, in addition of a small quantity of this substance markedly increases the effectiveness of fly sprays. The meal remaining after oil extraction can be used as and animal feed-stuff or as manure. In general sesame meal is considered to be equal to cottonseed or soybean meal as a protein supplement for livestock and poultry. It is especially high in certain amino-acids such as methionine, which is low in soybean meal, and thus can be combined with it or similar meal to form a more balanced ration. An attempt to summarize the literature review on quality improvement of sesame was made to discuss the accomplishments of the past and perspectives in the future. The reviews on quality improvement of sesame were mainly discussed in connection with the cultural practices and genetic informations in current status. The emphasis focussed on environmental variation of quality in cultural practices, such as harvest time, variety by location, climatic condition, fertilizer application, and growth regulator treatment. On the genetic variation of quality, it was discussed on variety background, mutation breeding, correlations, and inheritance of quality related characteristics. It also was discussed on relationship between quality and plant traits, storage condition or period, and seed coat color. Moreover, current research status were reviewed on some minor elements such as sesamin, oxalic acid, and trypsin inhibitor. As a results of the review, the lack of an effort to quality improvement in each utilization area was indicated as a problem area. More active efforts for the improvement of quality were also insufficient to incorporate the available genes for quality in breeding method or collection and analysis of breeding materials. Therefore, researches in the future would be recommended to emphasize on these problem areas.

  • PDF

IAA-Producing Penicillium sp. NICS01 Triggers Plant Growth and Suppresses Fusarium sp.-Induced Oxidative Stress in Sesame (Sesamum indicum L.)

  • Radhakrishnan, Ramalingam;Shim, Kang-Bo;Lee, Byeong-Won;Hwang, Chung-Dong;Pae, Suk-Bok;Park, Chang-Hwan;Kim, Sung-Up;Lee, Choon-Ki;Baek, In-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.856-863
    • /
    • 2013
  • Application of rhizospheric fungi is an effective and environmentally friendly method of improving plant growth and controlling many plant diseases. The current study was aimed to identify phytohormone-producing fungi from soil, to understand their roles in sesame plant growth, and to control Fusarium disease. Three predominant fungi (PNF1, PNF2, and PNF3) isolated from the rhizospheric soil of peanut plants were screened for their growth-promoting efficiency on sesame seedlings. Among these isolates, PNF2 significantly increased the shoot length and fresh weight of seedlings compared with controls. Analysis of the fungal culture filtrate showed a higher concentration of indole acetic acid in PNF2 than in the other isolates. PNF2 was identified as Penicillium sp. on the basis of phylogenetic analysis of ITS sequence similarity. The in vitro biocontrol activity of Penicillium sp. against Fusarium sp. was exhibited by a 49% inhibition of mycelial growth in a dual culture bioassay and by hyphal injuries as observed by scanning electron microscopy. In addition, greenhouse experiments revealed that Fusarium inhibited growth in sesame plants by damaging lipid membranes and reducing protein content. Co-cultivation with Penicillium sp. mitigated Fusarium-induced oxidative stress in sesame plants by limiting membrane lipid peroxidation, and by increasing the protein concentration, levels of antioxidants such as total polyphenols, and peroxidase and polyphenoloxidase activities. Thus, our findings suggest that Penicillium sp. is a potent plant growth-promoting fungus that has the ability to ameliorate damage caused by Fusarium infection in sesame cultivation.

EFFECTS OF GAS EXHAUSTED FROM GASOLINE ENGINE ON PLANTS GROWN IN THE GREENHOUSE

  • Sugimoto, H.;Yamashita, J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.487-494
    • /
    • 1993
  • In order to establish a fully automatized pest control in the a greenhouse , the authors developed a prototype of microcomputer installed spraying vehicle which traveled along the furrows. Since a power sprayer mounted on the vehicle was driven by gasoline engine, plants grown in the greenhouse might be injured by the gas exhausted from the engine. Thus , effects of exhausted gas on photosynthetic rate and the shedding of flowers and buds of plants were examined. At first, effects of exhausted gas on photosynthetic rate of potted sweet pepper (Capsicum annuum L.) and eggplant(Solanum melongena L.) plants were examined. In a closed vinyl house the engine was operated for 5 minutes and plants were exposed to the gas for 2hours in the daytime on a fine day. Photosynthetic rate did not significantly decreased by the treatment in both species. Secondly, effects of ehtylene on the shedding of flowers and buds of sesame (Sesamum indicum L. ) were examined. In the closed and partiall opened vinyl house, the engine was operated for 5 minutes and potted sesame plants were exposed to the gas for 12 hours in the night. In partially opened vinyl house, ethylene concentration decreased to 0 ppm 3 hours after the engine was stopped and flower and bud did not shed. In contrast, when vinyl house was closed ethylene concentration was 0.75 pm even 12 hours after the engine was stopped and flowers and buds shed markedly and epinasty was observed in upper young leaves. As mentioned above , it was revealed that injury of plants in the greenhouse caused by the gas exhausted from a gasoline engine could be prevented by providing suitable ventilation.

  • PDF

Effect of Night Illumination on Growth and Yield of Sesame and Perilla (야간조명이 참깨와 들깨의 생육 및 수량에 미치는 영향)

  • 김충국;서종호;조현숙;김시주;변종영
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.2
    • /
    • pp.80-85
    • /
    • 2002
  • This study was conducted to investigate the effects of night illumination on the growth and yield of sesame(Sesamum indicum) and perilla(Perilla frutescens). Stem length and height of the first pod in sesame increased, whereas number of branch was reduced and flowering date and maturing date delayed as light intensity of night illumination increased. Number of capsules per plant, ripening ratio and seed yield of sesame were reduced as light intensity of night illumination increased. Yield reduction was greater in Ahnsankkae than in Sodunkkae. Number of nodes increased under night illumination in perilla. Two test cultivars showed reduction in number of branch at 6~10 Lx(22 ㎽ m$^{-2}$ ) intensity of night illumination, even though there was a variation between cultivars. Perilla was sensitive to night illumination far flowering and ripening. Flowering date was delayed by 21 to 28 days at 6~10 Lx intensity of night illumination. Number of flower clusters, number of seeds per flower cluster, and 1,000-seed weight in perilla were significantly reduced and seed yield was reduced by 89 to 98% at 6-10 Lx intensity of night illumination.

The Effects of Phosphate to the Growth and Oil Contents in Sesame(Sesamum indicum L.) (참깨의 단경, 분지형에 있어서 인산함량이 함유율과 지상부 생육에 미치는 영향)

  • 서관석;김준기;김소연;이주열;최창열
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.4
    • /
    • pp.314-320
    • /
    • 1984
  • Effects of phosphorous fertilizer on the growth habit and yield of monoculm and branch types of two leading sesame varieties was investigated. The photosynthetic rate of at each growing stage was high at the flowering stage. The photosynthetic rate of monoculm sesame variety, Pungnyeon was high prior to flowering stage, while the Kwangsan variety, branch type was high after the flowering stage. The level of phosphate were most effective in increasing photosynthesis when standard level of fertilizer was applied in both varieties. Kwangsan variety showed higher photosynthetic rate per unit area, higher NAR, and CGR and higher LAR and RGR at the maximum flowering stage than the Pungnyoeon variety. Those characters attained maximum level when standard levels of phosphorous fertilizer were applied. The protein and oil content of seeds were higher in Kwangsan variety compared with Pungnyeon. However, the carbohydrate of seeds was high for Pungnyeon variety. The highest protein content was attained when standard level of fertilizer were applied. The oil content appeared to increase as the level of applied fertilizer increased. The results suggest that the vegetative growth and seed yields of sesame may be enough with present level of fertilizers. However, higher amount of phosphorous fertilizer may be required to increase the oil content of sesame seeds.

  • PDF