• Title/Summary/Keyword: Servo-motor

Search Result 999, Processing Time 0.032 seconds

Design of Performance Evaluation System and Measurement of Dynamic Behavior for Fluid Hydrodynamic Bearing in HDD (HDD용 유체동압베어링 성능평가 시스템 설계 및 동적거동 측정)

  • Kang, Jung-Woo;Lee, Tae-Whi;Lee, Hyoung-Wook;Park, Sung-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1159-1165
    • /
    • 2011
  • The recording density of HDD is increasing in ratio of 100% each year. Because the increasing of recording density requires the feature of high rotation, fixation and low-noise, fluid hydrodynamic bearing(FDB) has been paid attention to overcome a limitation in ball bearing. Most of researches related to improving performance of FDB have been studied in Japan which has 80% more market share of HDD spindle motor assembly. Main subject of studies are about for the design of the groove shape, manufacturing process of fluid dynamic bearing, performance evaluation and measurement. In HDD, non-repeatable runout(NRRO) is most important parameter which determines the performance of HDD spindle system because NRRO is unpredictable that cannot be compensated in head/slider servo system. In this study, performance evaluation system can measure dynamic behaviors were designed and methodology for calculating imbalance, RRO, and NRRO were proposed.

A Study on the Development of High Precision Cam Profile Measuring System using Laser Interferometer (레이저를 이용한 캠 프로파일 정밀 측정 장치 개발에 관한 연구)

  • Lim S.H.;Lee C.M.;Jung J.Y.;Yoon S.D.;Shin S.H.;Shin S.W.;Hwang Y.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.267-268
    • /
    • 2006
  • Cam mechanisms are one of the most popular devices for generating irregular motion and are widely used in many industrial areas. The purpose of this study is the development of high precision measuring system fur measurement data acquisition and analysis of a manufactured cam profile. The developed system is composed of servo motor, CNC controller, rotary encoder, and laser interferometer And also, this system is non-contact measuring type. The developed system takes only 5 minutes to measure a cam profile and to analyze the measuring data while the CMM(coordinate measuring machine) takes about 1 hours even by a skilled operator.

  • PDF

Characteristics of Dynamic Postural Control in Anteroposterior Perturbation of a Platform (전후방향의 플랫폼 이동에 대한 동적균형 회복 특성)

  • 태기식;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1066-1069
    • /
    • 2002
  • Dynamic postural control varies with the environmental context, specific task and intentions of the subject. In this paper, dynamic postural control against forward-backward perturbations of a platform was estimated using tri-axial accelerometers and a force plate. Ten young healthy volunteers stood upright in comfortable condition on the perturbation system which was controlled by an AC servo motor. With anterior-posterior perturbations, movements of ankle, knee and hip Joints were obtained by tri-axial accelerometers. and ground reaction forces with corresponding displacements of the center of pressure(CoP) by the force plate. The result showed that the ankle moved first and the trunk forward, which implies that the mechanism of the dynamic postural control in forward-backward perturbations, occurred in the procedure of the ankle, the knee and the hip. Knee flexion and hip extension in the period of acceleration, constant velocity and deceleration phase is very important fur the balance recovery. These responses depends on the magnitude and timing of the perturbation. From the present study the accelerometry-system appears to be a promising tool for understanding kinematic accelerative In response to a transient platform perturbation. A more through understanding of balance recovery mechanism may aid in designing methods for reducing falls and the resulting injuries.

  • PDF

Development of Fuel Rod Fretting Wear Tester (핵연료봉 프레팅마멸 시험기 개발)

  • 김형규;하재욱;윤경호;강흥석;송기남
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.245-251
    • /
    • 2001
  • A fretting wear tester is developed for experimental study on the fuel fretting problem of light water reactor. The feature of the developed tester is it can simulate the existence of gap between spring and fuel rod as well as different contacting force including the just-contact condition (0 N on the contact). Used are a servo-motor, an eccentric cylinder and lever mechanism for driving system. A spacer grid cell is constituted with four strap segments (each segment has a spring). This fretting wear tester can also be used as a fatigue tester of a spacer grid spring with the frequency of more than 10 Hz. It is required to simulate the frequency of the vibrating fuel rod due to flow-induced vibration in a reactor. In fretting wear test, up to two span-length of a fuel cladding tube can be accommodated. A specimen of cladding tube of one span-length is specially designed, which can be extended for two-span test. For .fatigue test, a device for clamping the spring fixture is installed additionally, Presently, the tester is designed for the condition of air environment and room temperature. The variation of the reciprocal distance is measured to check the stability of input force, which will be exerted to the cladding (for fretting wear. test) and the spring (for fatigue test) specimen.

  • PDF

An Experimental Study on Incremental Roll Forming Process for Manufacturing Doubly Curved Ship Hull Plates (이중 곡률을 가지는 선박용 외판 성형을 위한 점진적 롤 성형 공정의 적용에 관한 실험적 연구)

  • Shim, D.S.;Jung, C.G.;Seong, D.Y.;Han, M.S.;Chung, S.W.;Yang, D.Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • In order to manufacture a doubly curved sheet metal, the incremental roll forming process which adopts advantages such as the flexibility of the incremental forming process and continuous bending deformation of the roll forming process has been experimentally investigated. An experimental equipment was developed which was named as unit roll set (URS) consisting of two pairs of support rolls and an upper center roll. The upper roll equipped with the servo control unit is motor-driven and can be positioned in the vertical direction according to the user's commands. Four support rolls are idle, and they freely rotate only along the axis so as to transfer the plate more stably in the tangential direction of the rotation of the driving roll. In the process, the plate is deformed incrementally as deformation proceeds simultaneously in longitudinal and transverse directions. Through the experiments using URS, information regarding to forming schedules is found out to fabricate curved hull plates. This study demonstrates the further application of the incremental roll forming process in shipbuilding industries.

Experimental Analysis of Flow Characteristics around Wind-Turbine Blades (풍력터빈 블레이드 주위 흐름의 유동특성에 대한 실험적 분석)

  • Lee, Jung-Yeop;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.64-71
    • /
    • 2010
  • The flow and noise characteristics of wake behind wind-turbine blades have been investigated experimentally using a two-frame particle image velocimetry (PIV) technique. Experiments were carried out in a POSTECH subsonic large wind-tunnel ($1.8^W{\times}1.5^H{\times}4.3^L\;m^3$) with KBP-750D (3-blade type) wind-turbine model at a freestream velocity of $U_o\;=\;15\;m/s$ and a tip speed ratio $\lambda\;=\;6.14$ (2933 rpm). The wind-turbine blades are connected to an AC servo motor, brake, encoder and torque meter to control the rotational speed and to extract a synchronization signal for PIV measurements. The wake flow was measured at four azimuth angles ($\phi\;=\;0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$) of the wind-turbine blade. The dominant flow structure of the wake is large-scale tip vortices. The turbulent statistics such as turbulent intensity are weakened as the flow goes downstream due to turbulent dissipation. The dominant peak frequency of the noise signal is identical to the rotation frequency of blades. The noise seems to be mainly induced by the tip vortices.

Balance Recovery Mechanisms Against Anterior Perturbation during Standing (직립자세에서의 전방향 동요 시 균형회복 기전)

  • 태기식;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.435-442
    • /
    • 2003
  • In this paper, biomechanical aspects of dynamic대학교postural responses against forward perturbations were experimentally determined simultaneous measurements of joint angles, accelerations. EMG activations, center of pressure(CoP) movements and ground reaction forces(GRF), Thirteen young healthy volunteers, stood on a flat platform, were translated into the forward direction by an AC servo-motor at two separate velocities(0.1m and 0.2m/s). In order to recover postural balance against the forward perturbation, joint motions were observed in the sequence of the ankle dorsiflexion, the knee flexion and then the hip flexion during the later acceleration phase. Both acceleration patterns at the heel and the sacrum were shown the forward acceleration pattern during the later acceleration phase and early of constant velocity phase as increasing platform velocity, respectively. Tibialis anterior(TA) for the ankle dorsiflexion and biceps femoris(BF) for the knee flexion. the primary muscle to recover the forward perturbation, was activated during the half of acceleration phase. Ankle strategy was used for slow-velocity perturbation, but mixed strategy of both ankle and hip used for the fast-velocity perturbation. In addition, parameters of perturbation such as timing and magnitude influenced the postural response against the perturbation.

Development of A Haptic Steering System for a Low Cost Vehicle Simulator using Proving Ground Test Data (주행 시험 데이터를 이용한 저가형 차량시물레이터의 조향감 재현 장치 구현)

  • Kim, Sung-Soo;Jeong, Sang-Yoon;Lee, Chang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.37-43
    • /
    • 2005
  • A haptic steering system which reflects steering reaction torque has been developed for a fixed base vehicle simulator. The haptic steering system consists of a steering effort sensor, MR-clutch, AC servo motor and controller. In order to generate realistic steering torque feel to driver and at the same time to meet real-time simulation requirement, 3D torque map is constructed by experimental data and torque generation algorithm using the torque map has been also developed. 3D torque map is constructed using curve fitting and interpolation of the measured values of the steering angle, velocity and steering torque from actual slalom test on the proving ground. In order to carry out performance test of the developed haptic steering system, a fixed based vehicle simulator is constructed by integrating real time vehicle dynamics module, VR-video/audio module, and the haptic steering system. Steering torque and steering angle curves have been obtained from virtual testing in the vehicle simulator and performance of the haptic steering system has been evaluated.

Development of Speed Estimation Algorithm for Low-effecting of T.G Ripple by Using Generalized Observation Technique (일반화 관측기법을 이용한 T.G 리플의 영향력 감소를 위한 속도추정 알고리즘)

  • Kim, H.S.;Lee, C.H.;Kim, S.B.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.55-59
    • /
    • 1999
  • Generally, T.G(Tacho-generator, Tachometer) sensor is used widely for sensing the angular velocity in rotary machine. By limitation of T.G sensor's structure, the sensed angular velocity include a periodic noise, and the noise is called "ripple" as an electrical term. To reduce the effecting of the ripple, many kinds of filters are designed and installed, but there is necessary a trade off between response time and adapted frequency band. In this paper, we propose a generalized observer to estimate an angular velocity from the output signal of T.G sensor. The generalized observer is proposed firstly for continue systems, and it is applied to DC servo motor with T.G sensor. For simulation, we measure T.G signals at 60, 400, 570 rpm respectively, and analysis those to obtain the resonance frequency of ripple by FFT method. To verify the effectiveness of the proposed algorithm, we compare the results with those of a RC low frequency band filter.

  • PDF

Analysis on the Propulsion Force of an Ostraciiform Fish Robot with Elastically Jointed Double Caudal Fins and Effect of Joint Position on the Propulsion Force (탄성 조인트로 연결된 이중 꼬리 지느러미 오스트라키폼 물고기 로봇의 추진력 해석 및 조인트 위치가 추력에 미치는 영향)

  • Kang, I-Saac
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.274-283
    • /
    • 2011
  • A simplified linearized dynamic equation for the propulsion force generation of an Ostraciiform fish robot with elastically jointed double caudal fins is derived in this paper. The caudal fin is divided into two segments and connected using an elastic joint. The second part of the caudal fin is actuated passively via the elastic joint connection by the actuation of the first part of it. It is demonstrated that the derived equation can be utilized for the design of effective caudal fins because the equation is given as an explicit form with several physical parameters. A simple Ostraciiform fish robot was designed and fabricated using a microprocessor, a servo motor, and acrylic plastics. Through the experiment with the fish robot, it is demonstrated that the propulsion force generated in the experiment matches well with the proposed equation, and the propulsion speed can be greatly improved using the elastically jointed double fins, improving the average speed more than 80%. Through numerical simulation and frequency domain analysis of the derived dynamic equations, it is concluded that the main reason of the performance improvement is resonance between two parts of the caudal fins.