• Title/Summary/Keyword: Servo motor control

Search Result 792, Processing Time 0.027 seconds

A study on the improvement of floating point operation for AC servo motor controller based on fixed point DSP (고정소수연산 DSP 기반 AC 서보모터 제어기의 소수연산 개선에 관한 연구)

  • Hwang, In-Sung;Hong, Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.43-45
    • /
    • 2004
  • This paper represents the improvement of floating point operation for AC servo motor controller based on fixed point operation DSP. TMS320F2812 has fixed point operation processing structure. The controller parameters are modified to the digitized data by scaling the original parameters. TMS320F 2812 is a 32-bit processor, and it could have enough accuracy to get the digitized data this procedure is implemented and the experiments controling a AC servo system.

  • PDF

Reconfiguration of Redundant Joints for Fault Tolerance of a Servo Manipulator (여유 자유도를 갖는 서보 매니퓰레이터의 내고장 제어를 위한 재형상 기법)

  • 박병석;안성호;윤지섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.899-906
    • /
    • 2004
  • In this paper, fault tolerant algorithm is presented for a servo manipulator system. For fault tolerance of a servo manipulator system, reconfiguration algorithm accommodating a motor's failure has been presented. The algorithm considers a transport's degree of freedoms as redundant joints of a servo manipulator. The reconfiguration algorithm recovers the end effector's motion in spite of one motor's failure A modified pseudo inverse redistribution method has been proposed for the reconfiguration algorithm. Numerical examples and hardware tests have been presented to verify the proposed methods.

DC Servo Motor Speed Control Characteristics with Microprocessor (마이크로 프로세서에 의한 DC Servo 전동기 속도제어 특성)

  • Park, Hae-Am;Kim, Dong-Hui;Kim, Dae-Gon;Kim, Pyoung-Ho;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1179-1181
    • /
    • 1992
  • A discrete Pl controller is implemented easily using a micro-processor, and it can be confirmed to a adaption of a system and real time processing. In this paper, a speed controller by discrete Pl control using a IBM PC/AT(12MHz) as a micro-processor is implemented and applied to a DC servo motor. In designing the discrite Pl controller, a sampling time and a speed is accepted from key-board, and is processed the control coefficient automatically, and than calculate the gain. Therefore the speed of a DC servo motor is obtained and controlled regulaly. The designed and manufactured discrete Pl control system is experimented. The result shows the good response at the 60 RPM to 250 RPM on the load using the load-spring. The speed error is under 1% on the steady load, but nearly 2-3% on the transient load.

  • PDF

A High Performance Permanent Magnet Synchronous Motor Servo System Using Predictive Functional Control and Kalman Filter

  • Wang, Shuang;Zhu, Wenju;Shi, Jian;Ji, Hua;Huang, Surong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1547-1558
    • /
    • 2015
  • A predictive functional control (PFC) scheme for permanent magnet synchronous motor (PMSM) servo systems is proposed in this paper. The PFC-based method is first introduced in the control design of speed loop. Since the accuracy of the PFC model is influenced by external disturbances and speed detection quantization errors of the low distinguishability optical encoder in servo systems, it is noted that the standard PFC method does not achieve satisfactory results in the presence of strong disturbances. This paper adopted the Kalman filter to observe the load torque, the rotor position and the rotor angular velocity under the condition of a limited precision encoder. The observations are then fed back into PFC model to rebuild it when considering the influence of perturbation. Therefore, an improved PFC method, called the PFC+Kalman filter method, is presented, and a high performance PMSM servo system was achieved. The validity of the proposed controller was tested via experiments. Excellent results were obtained with respect to the speed trajectory tracking, stability, and disturbance rejection.

A study about rotor position estimation enhance using IQ math in DSP (DSP 내의 IQ math를 이용한 회전자 위치 추정 정밀도 향상에 관한 연구)

  • Jang, Joong-Hack;Lee, Kwang-Ho;Hong, Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.98-100
    • /
    • 2005
  • DSPs used at motor control are usually fixed point processor. They need scaling because they cannot excute floating point calculation. Scaling for floating point calculation makes the DSP's speed down, complex coding and etc. Therefore the IQ math is adopted. IQ math makes the fixed point processor possible to calculate the floating point math. In addition, IQ math can reduce memory usage and be more faster than that without IQ math. It seems that IQ math is appropriate in motor position control. In comparison of the position calculation between the IQ math, math function and the sine table, the method using IQ math is superior than other methods.

  • PDF

BLDC(Brushless DC) Motor Control Algorithm to be easily Realized by a Micro Processor (마이크로 프로세서로 손쉽게 구현 가능한 BLDC(Burshless DC)-모터 제어 알고리즘)

  • 이영주
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.59-62
    • /
    • 2002
  • BLDC motor is widely used in automation areas for its good maintenance and controllability. In this paper it is designed for a speed control servo system of sinusoidal typo BLDC motor that can be easily adapted to automation systems with lower cost. Also, control parameters & periods are made adjustable according to the sensors of the motor, electric and mechanical time constant, and PI and PD control are used. The processor for the proposed system is a low cost 16bit One-Chip microprocessor. By experimental results from application to the industrial sewing machine, one of the application of BLDC motor, it can be verified that under the given reference, the system is enough as a speed and position servo without overshoots.

  • PDF

Speed control of AC servo system using a sliding control techniques (슬라이딩 제어기법을 이용한 교류 서보 시스템의 속도제어)

  • Lee, Je-Hie;Huh, Uk-Youl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.115-120
    • /
    • 1996
  • In this paper, a sliding mode controller which is characterized by high accuracy, fast response and robustness is applied to speed control of AC-SERVO motor. The control input is changed to the continuous one in the boundary layer to reduce the chattering phenomenon, and the boundary layer converges to zero when the state variables of system reach to steady state values. The integral compensator is added to reduce steady state error and to provide the continuous torque reference. The acceleration which is necessary for the sliding plane is estimated by an obsever. Sliding surface is included in control input to enhance the robustness and transient response without increasing sliding mode controller gain. The proposed controller is implemented by DSP(digital signal processor). The effectiveness of the proposed scheme is demonstrated through experimental works.

  • PDF

The Performance Evaluation of Precision Position Control Servo System (정밀 위치제어 서보시스템의 성능 평가)

  • 이원희;김동수;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.424-427
    • /
    • 2002
  • Pneumatic control systems have the potential to provide high output power to weight and size ratios at a relatively low cost. However, they are mainly employed in open-loop control applications where positioning repeatability is not of great importance. This paper presents precision positioning control of pneumatic servo cylinder with on-off valve, Pneumatic low-friction cylinder with servo valve and DC servo motor under parameter variations. Basically positioning control uses PID controller, where needs a linearized model. A neural network is added to a PID controller to compensator nonlinearity of the system and an influence of friction force is consider as disturbance. The performances of the proposed algorithms were compared by experiments with them of PID controller. From those experiments is was shown that the proposed algorithms are more efficient about settling time, steady 7tate error and overshoot than PID control algorithm.

  • PDF

Implementation of motor control system using NodeJS and MongoDB (NodeJS와 MongoDB를 활용한 모터 동작 제어시스템 구현)

  • Kang, Jin Young;Lee, Young-dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.748-750
    • /
    • 2017
  • With the development of intelligent technologies, the Internet of Things(IoT) has been applied to various applications. A platform technology including a sensor-server-DB for easily managing data at a remote site is required. In this paper, we implemented a servo motor control system that moves by the smart phone tilt value using NodeJS and MongoDB. The system consists of Rasberry Pi, servo motor and smart phone and the servo motor sensor data is transmitted to NodeJS so that data can be stored in database.

  • PDF

AC Servo Motor Position and Speed Control Characteristics of CNC Machine Tools (CNC 공작기계의 AC 서보 모터의 위치 및 속도 제어 특성)

  • 박인준;백형래;정헌상;정수복;최송철
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.352-356
    • /
    • 1998
  • This paper is a study about Ac servo motor position and speed control characteristics which depend on feedforward control, the acceleration / deceleration time constant after the interpolation, and PI control, automatic deceleration at corner in order to shape cutting control of feed drive system of the machine tool. The shape error caused by delay of the servo system in the direction of radius at the time of circular cutting is reduced by feedforward control. The shape error generated by the position command delay is minimized by using the acceleration / deceleration time constant after the interpolation. The results were verified to optical machining center experimentation of the machine tool.

  • PDF