• Title/Summary/Keyword: Servo motor control

Search Result 792, Processing Time 0.027 seconds

Design of a Fuzzy-Tuning High Gain Observer for Speed-Sensorless Control of an AC Servo Motor (교류 서보 전동기 속도센서리스 제어를 위한 퍼지 동조 고이득 관측기 설계)

  • Kim, Sang-Hoon;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.12
    • /
    • pp.705-712
    • /
    • 2005
  • This paper deals with speed-sensorless control of an AC servo motor using Fuzzy-Tuning High Gain Observer(FTHGO). Resolver or encoder can be used to measure a rotor speed, but it has a limit to detect motor speed precisely. To solve this problem, it is studied to measure a speed of an AC servo motor without sensor. In this paper, the gain of an observer to estimate motor speed is properly set up and designed using the fuzzy control theory. It calculates the differentiation of the rotor current of the AC motor and estimates the rotor speed using it. Proposed speed sensorless control is performed using the estimated speed as the control variable. Designed FTHGO is applied to AC servo motor to verify the feasibility of the proposed observer. Feasibility of the FTHGO proposed in this paper is proven comparing the experimental results with/without the speed sensor.

A study on the torque characteristic of AC servo system by phase advance control (진상각 제어에 따른 AC 서보 모터의 토오크 특성에 관한 연구)

  • 임윤택;손명훈;허욱열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.393-400
    • /
    • 1992
  • The DC(Direct-Current) servo motor has widely used for many application areas, FA(Factory Automation), OA(Office Automation) and home applications. But DC servo motor needs periodical inspection because it has brush and commutator. Recently, AC servo motor has expanded it's application areas due to for the development of the power semi-conductor and control technology. But it has large torque ripple for it's small number of commutation. And it also has cogging torque due to permanent magenet rotor. Therefore it can't run balence rotarion. Many torque ripple reduction methods are published. In this paper, phase advanced method adopted for torque ripple reduction of AC servo motor. In this research, AC servo motor torque characteristic variation surveied under the phase advance control through the computer simulation. Under the simulation, the load inertia varied from 0.0001[Kg.m$^{2}$] to 0.0314[Kg.m$^{2}$]. The result os nonlinear simulation, torque and speed ripple of AC servo motor under the phase advance control reduced approximately 50[%] and 10[%]. And maximum torque of AC servo motor under phase advance control condition increased about 5[%] as compare with fixed switching time.

  • PDF

A Study on Improvement of Structural Sliding Method Using AC Induction Motor Servo Control Device (AC유도전동기 서보제어장치를 이용한 구조물 슬라이딩공법)

  • Cho, Young-nam;Han, Jae-woong;Jang, Won-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.235-237
    • /
    • 2018
  • In spite of the superiority of the sliding method in the building construction field, the AC induction motor servo control device is used as the power control technology in the building construction field in order to improve the problems of the hydraulic power control method, thereby contributing to the precision control and the productivity improvement. Based on Induction Motor Servo Controller, we proposed the development of a mobile sliding method using a complex combination of PC and MITY (MS) Servo.

  • PDF

DEVELOPMENT OF AC SERVO MOTOR CONTROLLER FOR INDUSTRIAL ROBOT AND CNC MACHINE SYSTEM (산업용 ROBOT와 공작기계를 위한 AC SERVO MOTOR 제어기 개발)

  • Lim, Sang-Gwon;Lee, Jin-Won;Moon, Yong-Ky;Jeon, Dong-Lyeol;Jin, Sang-Hyun;Oh, In-Hwan;Kim, Dong-Il;Kim, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1211-1214
    • /
    • 1992
  • AC servo motor drives, Fara DS series, proposed in this paper can be effectively used in robots, CNC machine tools, and FA system with AC servo motors as actuators. The inverter of the AC servo drive consists of IGBT (Insulated Gate Bipolar Transistor) which have high switching frequency. Noises and vibrations generated in variable speed control of AC servo motors can be greatly reduced due to their high switching frequencies. In the developed servo drive, maximum torque is always generated in the whole speed range by compensating phase shift, which results from the nonlinearies of the AC servo motor during abrupt acceleration and deceleration. Abundant protection functions are provided to prevent abnormal state of the servo motor, and furthermore diverse user options are considered provided for the effective application. The proposed AC servo motor drive is designed to minimize velocity variation with respect to external load, supply voltage, environmental temperature, and humidity, so can be widely used in the fields of factory automation including robots and CNC msachine tools.

  • PDF

A Study on Servo Motor Control in Multi Pallet System (다중 팔렛 시스템에 사용되는 서보 모터의 제어에 관한 연구)

  • Oh, Hyun-Woo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.6
    • /
    • pp.339-346
    • /
    • 2019
  • Multi-axis servo systems are widely used in various fields such as industiral systems for improving production efficiency, robotics and complex systems where many mechanical devices and sensor systems are connected. Such a servo system requires that the servo control technique to realize the synchronization of the drive shaft in the steady state and transient conditions and to control so as to follow the target track in order to improve product precision and production efficiency. In addition, embedded type hardware is required for smooth control of the entire multi-axis system. Therefore, this paper uses hardware based on FPGA which is widely used in digital signal processing field and various control system because hardware design change is easy and parallel processing is possible. In addition, Labview based servo motor control program was studied that can control the servo motor by ensuring the performance and flexibility of the FPGA and follow the target trajectory according to various speed processing and accurate timing synchronization.

Speed Control of Oil Hydaulic Motor Systems Using an Electrohydraulic Servo Valve (전기.유압 서보 밸브를 이용한 유압모터계의 회전수 제어)

  • 김도태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.405-410
    • /
    • 1999
  • Hydraulic pipeline between servo valve and actuator affect the dynamic characteristics of electrohydraulic servo systems in serveral ways. This paper deal with the speed control of oil hydraulic gear motor using electrohydraulic servo valve. The frequency and transient response of electrohydraulic servo valve coupled to a gear motor is anlayzed. In particular, the effect of short and long hydraulic pipelines between servo valve and gear motor is investigated. The dynamic characteristics of the speed control systems of gear motor with short pipeline is first described via frequency response experiments with small signal linearized analysis. Loner pipeline is applied distributed parameter pipeline model with consideration of frequency dependent viscous friction.

  • PDF

Design of a Neuro-Fuzzy Observer for Speed-Sensorless Control of DC Servo Motor (직류 서보 전동기 센서리스 속도제어를 위한 뉴로-퍼지 관측기 설계)

  • Ahn, Chang-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.3
    • /
    • pp.129-135
    • /
    • 2007
  • This paper deals with speed-sensorless control of DC servo motor using Neuro-Fuzzy Observer. DC servo motor has very low rotor inertia and excellent response characteristic and it is very useful to control torque and speed. It is easy to detect the voltage and current and resolver or encoder is used to measure a rotor speed. But it has a limit as a driving speed to detect speed precisely. So it is problem to improve the performance of the driving system. To solve this problem, it is studied to detect a speed of DC servo motor without sensor. In particular, study on the method to estimate the speed using the observer is performed a lot. In this paper, the gain of the observer is properly set up using the Neuro-Fuzzy control and Neuro-Fuzzy Observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. It calculates the differentiation of the rotor current directly using the rotor current measured in the DC servo motor and estimates the speed of the rotor using the differentiation. Proposed speed sensorless control method is performed using the estimated speed. Also, it is proved feasibility of the proposed observer from the comparison tested a case with a speed sensor and a case without a speed sensor which used a highly efficient drive and 200[w] DC servo motor starting system.

A Study on Humanoid Robot Control Method Using Zigbee Wireless Servo Motor with Sensor Network

  • Shin, Dae-Seob;Lee, Hyeong-Cheol
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.235-243
    • /
    • 2012
  • In this study, we developed two legged multi-joint robot by using wireless servo motor that was applied by wireless sensor network technology, which is widely used recently, and performed an experiment of walking method of two legged multi-joint robot. We constructed the star network with servo motors which were used at each joint of two-legged robot. And we designed the robot for operation by transmission of joint control signal from main control system or by transmission of the status of each joint to the main control system, so it operates with continuously checking the status of joints at same time. We developed the humanoid robot by using wireless digital servo motor which is different from existing servo motor control system, and controlled it by transmitting the information of angles and speeds of robot joints to the motor(node) as a feedback through main control system after connecting power and setting up the IDs to each joint. We solved noisy problem generated from wire and wire length to connection point of the control device by construction of the wireless network instead of using existing control method of wiring, and also solved problem of poor real time response to gait motion by controlling the position with continuous transmission of control signals to each joint. And we found that the effective control of robot is able by performing the simulation on walking motion in advance with the developed control algorithm which was downloaded into installed memory. Also we performed the stable walking with two-legged robot by attaching pressure sensor to robot sole. And we examined the robot gait operated by application of calculated algorithm on robot movement to each joint. In this study, we studied the method of controlling robot gait motion by using wireless servo motors and measured the torque applied to each joint, and found that the developed wireless servo motor by ZigBee sensor network offers easier control of two legged robot gait and better circuit configuration of it than the existing wired control system could do.

Digital Control System Of PMSM Type AC Servo Motor Using Micro-Processor (마이크로 프로세서에 의한 영구자석 동기 전동기형 AC 서보 전동기 디지탈 제어계 설계)

  • Yoon, Byung-Do;Kim, Eel-Hwan;Lee, Nae-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.321-324
    • /
    • 1988
  • This paper presents the result of driving performance analysis of PMSM type AC servo motor based on control system using a microprocessor. The experiment using the microprocessor is tested with a 120[v], 200[w] PMSM type AC servo motor. The PWM signal generated in the microprocessor for the servo motor voltage is chapped by power transistor modules to change the AC servo motor speed. The torque of the AC servo motor with a permanent magnet can be easily controlled over a wide range by changing the AC servo motor current.

  • PDF

Design of a Fuzzy-Sliding Observer for Control of DC Servo Motor (직류 서보 전동기 제어를 위한 퍼지-슬라이딩 관측기 설계)

  • 고봉운;김낙교
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.338-344
    • /
    • 2004
  • This paper presents a sensorless speed control of a DC servo motor using a fuzzy-sliding observer in the presences of load disturbances. A fuzzy-sliding observer is proposed in order to estimate the speed of a motor rotor. First, a sliding observer is used to estimate the derivative of the armature current directly using the armature current mesured in the DC servo motor. Second, the optimal gain of the Luenberger observer is set up using the fuzzy control. Experimental results show the good performance in the DC servo motor system with the proposed fuzzy-sliding observer.