• Title/Summary/Keyword: Servo drives

Search Result 124, Processing Time 0.018 seconds

Design of the Slider and Suspension for 4x1 Near-field Probe Array in Micro Optical Disk Drives (마이크로 광디스크 드라이브용 4x1 근접장 탐침 어레이를 위한 슬라이더와 서스펜션의 설계)

  • Hong, Eo-Jin;Jung, Min-Su;Oh, Woo-Seok;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.393-398
    • /
    • 2004
  • The near-field scanning micro scope (NSOM) technique is in the spotlight as the next generation storage device. Many different types of read/write mechanism for NSOM have been introduced in the literature. In order for a near-field probe to be successfully implemented in the system, a suitable slider and suspension are needed to be properly designed. The optical slider is designed considering near-filed optics and probe array. The suspension generally supports slider performance, and tracking servo capacity in HDD. Moreover, the suspension for optical slider also should meet the optical characteristics, and is also required to satisfy shock performances for the mobility for the actuator. In this study, the optical slider and the suspension fer near-field probe array are designed and analyzed.

  • PDF

Diminution of Current Measurement Error in Vector Controlled AC Motor Drives

  • Jung Han-Su;Kim Jang-Mok;Kim Cheul-U;Choi Cheol;Jung Tae-Uk
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.151-159
    • /
    • 2005
  • The errors generated from current measurement paths are inevitable, and they can be divided into two categories: offset error and scaling error. The current data including these errors cause periodic speed ripples which are one and two times the stator electrical frequency respectively. Since these undesirable ripples bring about harmful influences to motor driving systems, a compensation algorithm must be introduced to the control algorithm of the motor drive. In this paper, a new compensation algorithm is proposed. The signal of the integrator output of the d-axis current regulator is chosen and processed to compensate for the current measurement errors. Usually the d-axis current command is zero or constant to acquire the maximum torque or unity power factor in the ac drive system, and the output of the d-axis current regulator is nearly zero or constant as well. If the stator currents include the offset and scaling errors, the respective motor speed produces a ripple related to one and two times the stator electrical frequency, and the signal of the integrator output of the d-axis current regulator also produces the ripple as the motor speed does. The compensation of the current measurement errors is easily implemented to smooth the signal of the integrator output of the d-axis current regulator by subtracting the DC offset value or rescaling the gain of the hall sensor. Therefore, the proposed algorithm has several features: the robustness in the variation of the mechanical parameters, the application of the steady and transient state, the ease of implementation, and less computation time. The MATLAB simulation and experimental results are shown in order to verify the validity of the proposed current compensating algorithm.

Accuracy Simulation Technology for Machine Control Systems (기계장비 제어특성 시뮬레이션 플랫폼 기술)

  • Song, Chang-Kyu;Kim, Byung-Sub;Ro, Seung-Kook;Lee, Sung-Cheul;Min, Byung-Kwon;Jeong, Young-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.292-300
    • /
    • 2011
  • Control systems in machinery equipment provide correction signals to motion units in order to reduce or cancel out the mismatches between sensor feedback signals and command or desired values. In this paper, we introduce a simulator for control characteristics of machinery equipment. The purpose of the simulator development is to provide mechanical system designers with the ability to estimate how much dynamic performance can be achieved from their design parameters and selected devices at the designing phase. The simulator has a database for commercial parts, so that the designers can choose appropriate components for servo controllers, motors, motor drives, and guide ways, etc. and then tune governing parameters such as controller gains and friction coefficients. The simulator simulates the closed-loop control system which is built and parameter-tuned by the designer and shows dynamic responses of the control system. The simulator treats the moving table as a 6 degrees-of-freedom rigid body and considers the motion guide blocks stiffness, damping and their locations as well as sensor locations. The simulator has been under development for one and a half years and has a few years to go before the public release. The primary achievements and features will be presented in this paper.

Development of medical bed system equipped with body pressure sensors (체압센서를 장착한 의료용 침대 시스템의 개발)

  • Seon, Minju;Lee, Youngdae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.646-653
    • /
    • 2021
  • The medical bed developed in this study consists of N keys and each is driven vertically by an actuator. Since M sensors are mounted on each keyboard to measure body pressure, the resolution of the body pressure map is determined by the MN. A sensor controller is mounted on each keyboard, and the body pressure values measured from M sensors are transmitted to the main controller through a serial communication network such as CAN (Car Area Network). Each keyboard is equipped with a servo driver that drives a motor, and it is connected to the main controller via CAN to control the height of the keyboard according to the displacement value indicated by the main controller. In addition, the maximum body pressure value and body pressure ratio applied to each part of the keyboard are calculated and used as the basic data for controlling bed comfort by artificial intelligence. As a result, the proposed system can be a foundation that can be used for the control of body comfort and pressure sore prevention by artificial intelligence to be developed in the future.