• Title/Summary/Keyword: Servo Solenoid

Search Result 33, Processing Time 0.028 seconds

Characteristic Analysis and Experiment of Pneumatic Servo Valve (공기압 서보밸브 특성해석 및 실험)

  • Kim, Dong-Soo;Lee, Won-Hee;Choi, Byung-Oh
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.967-973
    • /
    • 2004
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The first objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. And a tester for conducting an overall performance test was designed and manufactured, and as a result of conducting the flow rate test, the pressure test and the frequency test on the developed pneumatic servo valve.

  • PDF

Development of Direct Drive type Pneumatic Servo Valve (직동식 공기압 서보밸브 개발)

  • Kim, Dong-Su;Lee, Won-Hui;Choe, Byeong-O
    • 연구논문집
    • /
    • s.34
    • /
    • pp.69-77
    • /
    • 2004
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. Further, the performance of pneumatic servo valve has been verified through an overall performance test on the developed product.

  • PDF

Development of the Pneumatic Servo Valve

  • Kim, Dong-Soo;Choi, Byung-Oh;Kim, Kwang-Young;Lee, Won-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1146-1151
    • /
    • 2003
  • Pneumatic servo valve is an electro-mechanical device which change electric signals to a proper pneumatic signals, that is, flowrate and pressure. In this study, a pneumatic servo valve was designed and each simulation was conducted on any variation in the flowrate depending upon the magnetic force of the linear force motor and the displacement of the spool. And permanent magnet was used as a material for the plunger of the servo valve. Thereby, a low electrical power consumption type coil was desinged. And a modeling for the coil design was conducted by using the magnetic circuit. also, the feasibility of the modeling was verified by using a commercial magnetic field analysis program. The designed and fabrication of the spool and sleeve, position sensor, servo controller and the dynamic characteristic verified by the experiment.

  • PDF

Development of Pneumatic Servo Actuator for the Energy saving system (에너지 절약 시스템 공압 서보 액추에이터 개발)

  • Bae, Sung-Woo;Kim, Dong-Soo;Kim, Myoung-Sub
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1428-1432
    • /
    • 2007
  • The object of this paper is development of pneumatic servo actuator technique for energy saving type. In this paper, consist of pneumatic servo actuator technique is pneumatic servo valve, pneumatic motor and cylinder. This technique applied a automobile, aerospace engineering, a ship, defence industry and industrial machine because it have high response, high speed, high precision control, low friction etc., compare with previously technique. But it depend on import the whole quantity. So this study, suggest that through the development of servo actuator applicable the use of industrial field.

  • PDF

The Analysis and Design of Electro-pneumatic Servo Valve (공기압 Servo Valve 설계 및 해석)

  • Ko, J.H.;Ryu, D.L.;Lee, J.H.;Kim, Y.S.;Kim, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1210-1214
    • /
    • 2008
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signal into pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristic, no air leakage at null, and can be fabricated at a low-cost. The first objective of this research is to design and fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In this paper, we has been modeled as a system consisting of coupled electro-mechanic and mechanical subsystems. The appropriateness of the model has been verified by simulation. The simulation model resolves the valve body motion and the solenoid current at high accuracy. Also, we are calculate the displacement of spool and computed results show winding currents, magnetic actuator force, flux density line, displacement, velocity, back EMF, eddy current etc.

  • PDF

Electromagnetic Analysis on the Torque Motor of Servo Valve for the Fuel Supply System of Auxiliary Power Unit (보조 동력 장치 연료 공급용 서보밸브의 토크모터 전자기 해석)

  • Chang, Se-Myong;Jang, Gang-Won;Jeong, Heon-Sul;Rhee, Dong-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.3
    • /
    • pp.7-12
    • /
    • 2007
  • As a main part of an utility helicopter, the APU(Auxiliary Power Unit) has a solenoid valve system operated with a torque motor, which controls the flow rate in the fuel supply system. In this paper, we solved the Maxwell potential equations to analyze the electromagnetic force in the torque motor, and some additional analytic methods are used to compute the quantity of torque produced by the torque motor for the given circuit current. For the convenience, small displacement is assumed, and only magneto-static problem is considered for the two-dimensional cross section. The result will be compared with the three-dimensional analysis that will be studied in the near future.

  • PDF

A Development of Proportional Pressure Control Valve (비례압력제어밸브 개발)

  • Yun, S.N.;Ahn, B.K.;Ryu, J.S.;Ham, Y.B.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1041-1046
    • /
    • 2004
  • A proportional pressure control valve has a nonmagnetic ring which is inserted in between a coil and plunger and it can get attraction force in proportion to input current by an influence of control cone. Therefore, a proportional pressure control valve is applied to a servo system as substitution of servo valve and an on-off solenoid valve widely because control of a high level is possible and pollution level is low. The purpose of this study is to develop domestic model of a proportional pressure control valve, and a test model was designed and manufactured through valve system analysis and finite element analysis. And comparison between results of theoretical analysis and static / dynamic characteristics test were carried out on a manufactured test model, and it was confirmed that it has excellent performance in comparison with other foreign products.

  • PDF

Nonlinear analysis of a pneumatic actuation system by digital simulation (전산모사에 의한 공압구동장치의 비선형 해석)

  • 조택동;신효필;문의준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1104-1109
    • /
    • 1991
  • Recently, Pneumatic Actuation System (PAS) has been used increasingly as a high performance fin-control servo actuation systems because of the special advantages of pneumatic units: primarily their low cost, small size, light weight, and tolerance to broad temperature extremes. In this study, a nonlinear model of PAS is derived through the detailed analysis of the major components in the typical system. The model includes nonlinear flow-pressure relationships of the flow through the solenoid valve openings and orifices, PWM algorithm for driving two solenoid valves as a closed-center 3-way valve for minimum gas consumption, solenoid valve dynamics, saturation, and friction. Simulation results are compared with the experimental ones for square and sinusoidal inputs to see the validity of the model. Independent of the shape and magnitude of the input signals, both results are in good agreements with minor difference.

  • PDF

Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics (IMV 비례 유량제어밸브 정특성 선형해석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.

Design and Dynamic Characteristic Analysis of the Direct Drive-type Pneumatic Servo Valve

  • Kim, Dong-Soo;Lee, Won-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.88.6-88
    • /
    • 2002
  • In this study, the pneumatic servo valve was developed, and the study results could be summarized as follows; 1. A servo solenoid was designed, and its electromagnetic field was interpreted and the system's transient response was identified by using a commercial analysis program. 2. A program for analysis the flow in the spool was developed, and a study was conducted on the flow rate of the nozzle depending upon the pressure ratio between the upstream pressure and the downstream pressure, when the valve is fully opened in the spool and the flow force depending upon a displacement of the spool in the valve. 3. A PWM analog controller was designed and manufactured in...

  • PDF