• Title/Summary/Keyword: Servo Control Method

Search Result 614, Processing Time 0.023 seconds

Linear Servo System by Fuzzy Control using Parameter Tuning of Membership Function (소속함수 파라미터 동조 퍼지제어에 의한 선형 서보 시스템)

  • 엄기환;손동설;이용구
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.3
    • /
    • pp.97-103
    • /
    • 1995
  • In this paper, for fuzzy control of linear servo system using the moving coil type linear DC motor, we propose a new fuzzy control method using parameter tuning for membership functions. A proposed fuzzy control method tunes parameters of membership function to have an appropriate control input signal for system when error exceeds predefined value and makes an inference using conventional fuzzy control rules when error reduces to a predefined value. To verify usefulness of a proposed fuzzy control method, making simulation and experiment, we compare with characteristics for conventional fuzzy control method.

  • PDF

Improved BP-NN Controller of PMSM for Speed Regulation

  • Feng, Li-Jia;Joung, Gyu-Bum
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.175-186
    • /
    • 2021
  • We have studied the speed regulation of the permanent magnet synchronous motor (PMSM) servo system in this paper. To optimize the PMSM servo system's speed-control performance with disturbances, a non-linear speed-control technique using a back-propagation neural network (BP-NN) algorithm forthe controller design of the PMSM speed loop is introduced. To solve the slow convergence speed and easy to fall into the local minimum problem of BP-NN, we develope an improved BP-NN control algorithm by limiting the range of neural network outputs of the proportional coefficient Kp, integral coefficient Ki of the controller, and add adaptive gain factor β, that is the internal gain correction ratio. Compared with the conventional PI control method, our improved BP-NN control algorithm makes the settling time faster without static error, overshoot or oscillation. Simulation comparisons have been made for our improved BP-NN control method and the conventional PI control method to verify the proposed method's effectiveness.

INTEGRATED VEHICLE CHASSIS CONTROL WITH A MAIN/SERVO-LOOP STRUCTURE

  • Li, D.;Shen, X.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.803-812
    • /
    • 2006
  • In order to reduce the negative effects of dynamic coupling among vehicle subsystems and improve the handling performance of vehicle under severe driving conditions, a vehicle chassis control integration approach based on a main-loop and servo-loop structure is proposed. In the main-loop, in order to achieve satisfactory longitudinal, lateral and yaw response, a sliding mode controller is used to calculate the desired longitudinal, lateral forces and yaw moment of the vehicle; and in the servo-loop, a nonlinear optimizing method is adopted to compute the optimal control inputs, i.e. wheel control torques and active steering angles, and thus distributes the forces and moment to four tire/road contact patches. Simulation results indicate that significant improvement in vehicle handling and stability can be expected from the proposed chassis control integration.

A study about rotor position estimation enhance using IQ math in DSP (DSP 내의 IQ math를 이용한 회전자 위치 추정 정밀도 향상에 관한 연구)

  • Jang, Joong-Hack;Lee, Kwang-Ho;Hong, Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.98-100
    • /
    • 2005
  • DSPs used at motor control are usually fixed point processor. They need scaling because they cannot excute floating point calculation. Scaling for floating point calculation makes the DSP's speed down, complex coding and etc. Therefore the IQ math is adopted. IQ math makes the fixed point processor possible to calculate the floating point math. In addition, IQ math can reduce memory usage and be more faster than that without IQ math. It seems that IQ math is appropriate in motor position control. In comparison of the position calculation between the IQ math, math function and the sine table, the method using IQ math is superior than other methods.

  • PDF

Mechanical Parameter Identification of Servo Systems using Robust Support Vector Regression (Support Vector Regression을 이용한 서보 시스템의 기계적 상수 추정)

  • Cho Kyung-Rae;Seok Jul-Ki;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.738-741
    • /
    • 2004
  • The overall performance of AC servo system is greatly affected by the uncertainties of unpredictable mechanical parameter variations and external load disturbances. Therefore, to compensate this problem, it is necessary to know different parameters and load disturbances subjected to position/speed control. This paper proposes an online identification method of mechanical parameters/load disturbances for AC servo system using Support Vector Regression (SVR). The proposed methodology advocates analytic parameter regression directly from the training data, rather than adaptive controller and observer approaches commonly used in motion control applications. The experimental results demonstrate that the proposed SVR algorithm is appropriate for control of unknown servo systems even with large measurement noise.

  • PDF

Mechanical Parameter Identification of Servo Systems using Robust Support Vector Regression (Support Vector Regression을 이용한 서보 시스템의 기계적 상수 추정)

  • Cho Kyung-Rae;Seok Jul-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.468-480
    • /
    • 2005
  • The overall performance of AC servo system is greatly affected the uncertainties of unpredictable mechanical parameter variations and external load disturbances. To overcome this problem, it is necessary to know different parameters and load disturbances subjected to position/speed control. This paper proposes an on-line identification method of mechanical parameters/load disturbances for AC servo system using support vector regression(SVR). The experimental results demonstrate that the proposed SVR algorithm is appropriate for control of unknown servo systems even with time-varying/nonlinear parameters.

Speed Sensorless Control Using Current Observer for AC Servo Motor (교류서보 전동기의 전류관측기를 이용한 속도 센서리스 제어)

  • 윤광호;남문현
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.402-407
    • /
    • 2004
  • This paper proposed a new speed sensorless control method for AC servo motor, which is based on the current observer. Recently, the study in the estimation using a observer is being widely progressed. In order to prove the superiority of the current observer, we made a comparison between the simulation using current observer and that using Luenberger observer. And also, a comparative experiment of the speed control of the AC servo motor using a sensor and using current observer has been executed. The experiment result shows that the estimation using current observer is superior to the estimation using Luenberger observer or to the speed response using a sensor.

High Speed Tool Feed System by the Mechanism of Ball Screw and Servo Motor (볼 나사와 서보모터 메커니즘에 의한 고속 TOOL 이송장치)

  • 김성식;김경석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.76-82
    • /
    • 1998
  • In this study, the Ball screw and Servo motor Mechanism is considered as a High Speed Tool Feed System for the machining of a piston of a reciprocating engine. For the machining of a piston, that shapes oval, high speed servo mechanism is needed as a positioning of a cutting tool, and the stroke of tool is 0.1 mm ~ 1 mm. Ball screw and servo motor Mechanism is available very much because this mechanism is used widely in general machine. This Mechanism has been designed with the use of the decrease in mass and partial wear of the ball screw for high speed positioning of tool. Also the periodic learning control method with the inverse transfer function compensation has been applied to the positioning control for the high accuracy positioning of tool. These applications lead the achievement of the machining of a piston with an accuracy of 5${\mu}{\textrm}{m}$ at 2500 rpm in CNC turning.

  • PDF

Experimental Considerations in Tracking Control of HDD Dual Stage Actuator (HDD의 2단구동기를 이용한 트랙 추종 제어의 실험적 고찰)

  • Park, Sung-Joon;Park, No-Cheol;Yang, Hyun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.237-242
    • /
    • 2000
  • The areal recording density of HDD(Hard Disk Drive) has been increasing by about 60% a year. In order to achieve high areal density, less track pitch is expected and more servo bandwidth is required. Dual stage actuator and servo controller for HDD have been suggested for achieving high track density as a possible solution. Dual-loop servo system is generally classified into a two-input-two-output system, but if we use an estimator for a two-input-two-output system, it can be converted into two input one output system. Since we can't control the dual stage servo system by the classical method, it requires a special technique; for example, Parallel Loop System, Master-Slave Loop System, Decoupled Master-Slave Loop System, and Dual Feedback Loop System. In this paper, we performed experimental evaluations of several types of control algorithm. Further experiments will be made in the future.

  • PDF

Experimental Study on Dynamic Positioning Contol of a Semi-Submergible Platform (반잠수식 해양구조물의 동위치제어에 관한 실험적 연구)

  • 김성근;유휘룡;김상봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.661-669
    • /
    • 1995
  • This paper presents a design method of dynamic positioning control system in view ofpractical design concept for reliability and robust realization. This method adopts a design method of multivariable robust servo system. The practical experiments of the dynamic positioning control were carried out for a semi-submersible 2-lower hull type platform model with 4 rotatable thrusters in a small water tank. The results fo overall experiment show that the proposed position control method will be an efficient method to the better control performance of dynamic positioning system under serere environment and it is substentially practicable for the platform.