• Title/Summary/Keyword: Servo

Search Result 2,290, Processing Time 0.03 seconds

An Adoptive Current Control Scheme of an AC Servo Motor for Performance Improvement of a Servo Drive (서보 드라이브 성능 향상을 위한 AC 서보 전동기의 적응형 전류 제어)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.96-103
    • /
    • 2006
  • An MRAC-based adaptive current control scheme of an AC servo motor is presented for the performance improvement of a servo drive. Although the predictive current control is known to give ideal transient and steady-state responses, its steady-state response my be degraded under motor parameter variations. To overcome such a limitation, the disturbances caused by the parameter variations will be estimated by using an MRAC technique and compensated by a feedforward control. The proposed scheme does not require the measurement of the phase voltage unlike the conventional disturbance estimation scheme using observer. The asymptotic stability is proved. The proposed scheme is implemented using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

A Study on Dynamics Analysis and Position Control of 5 D.O.F. Multi-joint Manipulater for Uncontact Remote Working (원격작업을 위한 5자유도 다관절 매니퓰레이터의 동특성 분석 및 위치제어에 관한 연구)

  • Kim, Hee-Jin;Jang, Gi-Wong;Kim, Seong-Il;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.87-99
    • /
    • 2022
  • We propoes a study on the dynamic characteristics analysis and position control of 5-degree multi-joint manipulators for untact remote working at construction sites and manufacturing plants. The main frame of freedom multi-joint manipulator consists of five elements, boom cylinder, boom cylinder, arm cylinder, bucket cylinder, and rotation joint and link. In addition, the main purpose of the proposed system is to realize the work of the manufacturing process or construction site by remote control. Motion control of the entire system is a servo valve control method by hydraulic servo cylinders for one to four joints, and a servo motor control method is applied for five joints. The reliability of the proposed method was verified through performance experiments by computer simulation.

Web-based Servo Motor Controller Design with Real-time Micro Embedded Operating System

  • Kim, Ga-Gue;Lee, Hyung-Seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1655-1658
    • /
    • 2004
  • In this paper, we design and implement remote servo motor control system with real-time micro embedded operating system. The system, where controller and camera image grabber are mounted, handles control commands transmitted from a remote PC web browser. A hard real-time servo motor driver running on the real-time micro embedded OS and then a digital control application which confirms precise sampling time intervals is constructed. Frame grabber images transmitted from camera are saved in a image data format to view on remote PC web browser.

  • PDF

Servo-Writing Method using Feedback Error Learning Neural Networks for HDD (피드백 오차 학습 신경회로망을 이용한 하드디스크 서보정보 기록 방식)

  • Kim, Su-Hwan;Chung, Chung-Choo;Shim, Jun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.699-701
    • /
    • 2004
  • This paper proposes the algorithm of servo- writing based on feedback error learning neural networks. The controller consists of feedback controller using PID and feedforward controller using gaussian radial basis function network. Because the RBFNs are trained by on-line rule, the controller has adaptation capability. The performance of the proposed controller is compared to that of conventional PID controller. Proposed algorithm shows better performance than PID controller.

  • PDF

The design of six degrees of freedom stewart motion platform using high power electro-hydraulic servo control

  • Kim, Young-Dae;Lee, Kwan-Sup;Kim, Chung-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1611-1616
    • /
    • 1991
  • A high power stewart platform is designed and manufactured to simulate the 6 degrees of freedom motion of moving vehicle. This paper describes the design of such a motion system including kinematic and kinetic analysis, real time servo control mechanical and hydraulic system configuration, and techniques of regeneration of test records. Discussions are also presented for an algorithm called remote parameter control, which has been developed to compensate the dynamic delay of the electro-hydraulic servo actuators and the nonlinearities of stewart platform.

  • PDF

LQ-servo method for non-minimum phase plants (비최소 위상 플랜트에서 LQ-servo 방법)

  • 서병설;장태우
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.9-16
    • /
    • 1996
  • LQ-servo is a robustness guaranteed multivariable controller design method based on the LQR structure to improve command following with output feedback. in this paper we introduce a weighting factor on the low frequency part of the state weighting matrix in the performance index in order to increase the low frequency gain of loop transfer function matrix T(s) in the loop shaping design method.

  • PDF

An adaptive control of servo motors for reducing the effect of cogging torques (코깅 토크의 영향 저감을 위한 서보 모터 적응제어)

  • 이수한;허상진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.291-294
    • /
    • 2004
  • Many researches have been focused on optimal designs of a pole shape in order to reduce cogging torques, which are generated between permanent magnets and slots. In this paper, an adaptive controller is proposed for reducing the effect of cogging torques in servo motors. The controller stabilizes the control system and shows an excellent trajectory tracking performance compared to the conventional PD controller.

  • PDF

Vector control of AC servo motor using high Performance DSP (고성능 DSP를 이용한 AC 서보 모터의 벡터제어)

  • Choi, Chi-Young;Hong, Sun-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.258-261
    • /
    • 2003
  • This paper is a studying of the vector control of AC servo motor using a high performance DSP(TMX320F2812). This DSP has many special peripheral circuits to drive a AC Servo motor as AD converter, QEP and so on. It makes us reduce the time of developing a control system and also can be simple size controller. We use vector control algorithm for instantaneous torque control and SVPWM algorithm by offset voltage methods.

  • PDF