• Title/Summary/Keyword: Services Strategies

Search Result 1,752, Processing Time 0.027 seconds

A Study on the Continuous Usage Intention Factors of O2O Service (O2O 서비스의 지속사용의도에 미치는 영향요인 연구)

  • Sung Yong Jung;Jin Soo Kim
    • Information Systems Review
    • /
    • v.20 no.4
    • /
    • pp.1-23
    • /
    • 2018
  • A smart phone has been widely spread around world and makes people enjoy online shopping in any time and any place. Recently it also changes the distribution environment. O2O (Online-to-Offline) service becomes new normal due to its convenience of ease shopping of product and services. O2O service market shows steady and steep growth, It is reported that, however, 80% of the businesses has been discontinued within the first year because of unstable business models, customer dissatisfaction and distrust of service. Therefore, it is very important research issue to find out influential factors promoting continuous usage intention of O2O service. Previous study shows that it only considers online characteristics and lack of analysis about offline characteristics and social impact factors. The purpose of this paper is to find out continuous usage intention factors of O2O services by literature review, case analysis, and empirical test. A comprehensive research model and related hypothesis are developed and tested by using a structural equation, Survey was carried out among users who have used O2O service including payment service for at least once. Finally 611 samples are selected out of total 813 surveys. The result shows that the model is theoretically proved and 12 out of 17 hypotheses are accepted. The contribution of this paper is that it provides a new theoretical research model about continuous usage intention factors as well as practical guidelines about promoting continuous usage and growth strategies of O2O service.

Changes in National Health Insurance Medical Expenses and Long-Term Care Costs between the Long-Term Care Group and General Older Adults Group before and after Long-Term Care Use (노인장기요양급여 이용 전후 장기요양군과 일반노인군 간 국민건강보험 및 노인장기요양보험 비용 추이)

  • Seung-Jin Oh;Kang Ju Son
    • Health Policy and Management
    • /
    • v.34 no.3
    • /
    • pp.249-260
    • /
    • 2024
  • Background: The Republic of Korea's aging population escalates medical and long-term care costs. While prior research has suggested that long-term care might reduce these costs, these studies had limitations in their subjects and duration, making it difficult to generalize the results. This study aims to evaluate cost changes between the long-term care group and the general older adults group after addressing these limitations. Methods: A cohort was derived from the 2015 national population using stratified sampling. Subsequently, 15,114 individuals (7,557 in each group) were identified through 1:1 propensity score matching. The study employed a difference-in-differences analysis to explore variances in medical costs and long-term care benefits post-utilization of long-term care services. Results: Compared to the general older adults group, the long-term care group experienced a reduction in monthly per capita total medical costs by 56,459 Korean won (KRW). Although costs at tertiary and general hospitals increased, those related to long-term care hospitals decreased by 90,687 KRW. Including long-term care benefits, overall expenditures increased by 948,038 KRW. Conclusion: The analysis reveals that the long-term care group faces higher medical costs in acute care than the general older adults group, emphasizing a greater need for medical services within this group. To meet the increasing medical demands of the long-term care group, a collaborative strategy linking community resources, healthcare, and long-term care facilities is imperative. Additionally, developing and implementing preventive health habit management strategies for middle-aged and older adults is essential to diminish the future requirement for long-term care.

Analyzing the User Intention of Booth Recommender System in Smart Exhibition Environment (스마트 전시환경에서 부스 추천시스템의 사용자 의도에 관한 조사연구)

  • Choi, Jae Ho;Xiang, Jun-Yong;Moon, Hyun Sil;Choi, Il Young;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.153-169
    • /
    • 2012
  • Exhibitions have played a key role of effective marketing activity which directly informs services and products to current and potential customers. Through participating in exhibitions, exhibitors have got the opportunity to make face-to-face contact so that they can secure the market share and improve their corporate images. According to this economic importance of exhibitions, show organizers try to adopt a new IT technology for improving their performance, and researchers have also studied services which can improve the satisfaction of visitors through analyzing visit patterns of visitors. Especially, as smart technologies make them monitor activities of visitors in real-time, they have considered booth recommender systems which infer preference of visitors and recommender proper service to them like on-line environment. However, while there are many studies which can improve their performance in the side of new technological development, they have not considered the choice factor of visitors for booth recommender systems. That is, studies for factors which can influence the development direction and effective diffusion of these systems are insufficient. Most of prior studies for the acceptance of new technologies and the continuous intention of use have adopted Technology Acceptance Model (TAM) and Extended Technology Acceptance Model (ETAM). Booth recommender systems may not be new technology because they are similar with commercial recommender systems such as book recommender systems, in the smart exhibition environment, they can be considered new technology. However, for considering the smart exhibition environment beyond TAM, measurements for the intention of reuse should focus on how booth recommender systems can provide correct information to visitors. In this study, through literature reviews, we draw factors which can influence the satisfaction and reuse intention of visitors for booth recommender systems, and design a model to forecast adaptation of visitors for booth recommendation in the exhibition environment. For these purposes, we conduct a survey for visitors who attended DMC Culture Open in November 2011 and experienced booth recommender systems using own smart phone, and examine hypothesis by regression analysis. As a result, factors which can influence the satisfaction of visitors for booth recommender systems are the effectiveness, perceived ease of use, argument quality, serendipity, and so on. Moreover, the satisfaction for booth recommender systems has a positive relationship with the development of reuse intention. For these results, we have some insights for booth recommender systems in the smart exhibition environment. First, this study gives shape to important factors which are considered when they establish strategies which induce visitors to consistently use booth recommender systems. Recently, although show organizers try to improve their performances using new IT technologies, their visitors have not felt the satisfaction from these efforts. At this point, this study can help them to provide services which can improve the satisfaction of visitors and make them last relationship with visitors. On the other hands, this study suggests that they managers along the using time of booth recommender systems. For example, in the early stage of the adoption, they should focus on the argument quality, perceived ease of use, and serendipity, so that improve the acceptance of booth recommender systems. After these stages, they should bridge the differences between expectation and perception for booth recommender systems, and lead continuous uses of visitors. However, this study has some limitations. We only use four factors which can influence the satisfaction of visitors. Therefore, we should development our model to consider important additional factors. And the exhibition in our experiments has small number of booths so that visitors may not need to booth recommender systems. In the future study, we will conduct experiments in the exhibition environment which has a larger scale.

The Factors Affecting Attitudes Toward HSDPA Service and Intention to Use: A Cross-Cultural Comparison between Asia and Europe (대영향(对影响)HSDPA복무적태도화사용의도적인소적연구(服务的态度和使用意图的因素的研究): 재아주화구주지간적(在亚洲和欧洲之间的)-개과문화비교(个跨文化比较))

  • Jung, Hae-Sung;Shin, Jong-Kuk;Park, Min-Sook;Jung, Hong-Seob;Hooley, Graham;Lee, Nick;Kwak, Hyok-Jin;Kim, Sung-Hyun
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.4
    • /
    • pp.11-23
    • /
    • 2009
  • HSDPA (High-Speed Downlink Packet Access) is a 3.5-generation asynchronous mobile communications service based on the third generation of W-CDMA. In Korea, it is mainly provided in through videophone service. Because of the diffusion of more powerful and diversified services, along with steep advances in mobile communications technology, consumers demand a wide range of choices. However, because of the variety of technologies, which tend to overflow the market regardless of consumer preferences, consumers feel increasingly confused. Therefore, we should not adopt strategies that focus only on developing new technology on the assumption that new technologies are next-generation projects. Instead, we should understand the process by which consumers accept new forms of technology and devise schemes to lower market entry barriers through strategies that enable developers to understand and provide what consumers really want. In the Technology Acceptance Model (TAM), perceived usefulness and perceived ease of use are suggested as the most important factors affecting the attitudes of people adopting new technologies (Davis, 1989; Taylor and Todd, 1995; Venkatesh, 2000; Lee et al., 2004). Perceived usefulness is the degree to which a person believes that a particular technology will enhance his or her job performance. Perceived ease of use is the degree of subjective belief that using a particular technology will require little physical and mental effort (Davis, 1989; Morris and Dillon, 1997; Venkatesh, 2000). Perceived pleasure and perceived usefulness have been shown to clearly affect attitudes toward accepting technology (Davis et al., 1992). For example, pleasure in online shopping has been shown to positively impact consumers' attitudes toward online sellers (Eighmey and McCord, 1998; Mathwick, 2002; Jarvenpaa and Todd, 1997). The perceived risk of customers is a subjective risk, which is distinguished from an objective probabilistic risk. Perceived risk includes a psychological risk that consumers perceive when they choose brands, stores, and methods of purchase to obtain a particular item. The ability of an enterprise to revolutionize products depends on the effective acquisition of knowledge about new products (Bierly and Chakrabarti, 1996; Rothwell and Dodgson, 1991). Knowledge acquisition is the ability of a company to perceive the value of novelty and technology of the outside (Cohen and Levinthal, 1990), to evaluate the outside technology that has newly appeared (Arora and Gambaradella, 1994), and to predict the future evolution of technology accurately (Cohen and Levinthal, 1990). Consumer innovativeness is the degree to which an individual adopts innovation earlier than others in the social system (Lee, Ahn, and Ha, 2001; Gatignon and Robertson, 1985). That is, it shows how fast and how easily consumers adopt new ideas. Innovativeness is regarded as important because it has a significant effect on whether consumers adopt new products and on how fast they accept new products (Midgley and Dowling, 1978; Foxall, 1988; Hirschman, 1980). We conducted cross-national comparative research using the TAM model, which empirically verified the relationship between the factors that affect attitudes - perceived usefulness, ease of use, perceived pleasure, perceived risk, innovativeness, and perceived level of knowledge management - and attitudes toward HSDPA service. We also verified the relationship between attitudes and usage intention for the purpose of developing more effective methods of management for HSDPA service providers. For this research, 346 questionnaires were distributed among 350 students in the Republic of Korea. Because 26 of the returned questionnaires were inconsistent or had missing data, 320 questionnaires were used in the hypothesis tests. In UK, 192 of the total 200 questionnaires were retrieved, and two incomplete ones were discarded, bringing the total to 190 questionnaires used for statistical analysis. The results of the overall model analysis are as follows: Republic of Korea x2=333.27(p=0.0), NFI=0.88, NNFI=0.88, CFI=0.91, IFI=0.91, RMR=0.054, GFI=0.90, AGFI=0.84, UK x2=176.57(p=0.0), NFI=0.88, NNFI=0.90, CFI=0.93, IFI=0.93, RMR=0.062, GFI=0.90, AGFI=0.84. From the results of the hypothesis tests of Korean consumers about the relationship between factors that affect intention to use HSDPA services and attitudes, we can conclude that perceived usefulness, ease of use, pleasure, a high level of knowledge management, and innovativeness promote positive attitudes toward HSDPA mobile phones. However, ease of use and perceived pleasure did not have a direct effect on intention to use HSDPA service. This may have resulted from the fact that the use of video phones is not necessary for everyday life yet. Moreover, it has been shown that attitudes toward HSDPA video phones are directly correlated with usage intention, which means that perceived usefulness, ease of use, pleasure, a high level of knowledge management, and innovativeness. These relationships form the basis of the intention to buy, contributing to a situation in which consumers decide to choose carefully. A summary of the results of the hypothesis tests of European consumers revealed that perceived usefulness, pleasure, risk, and the level of knowledge management are factors that affect the formation of attitudes, while ease of use and innovativeness do not have an effect on attitudes. In particular, with regard to the effect value, perceived usefulness has the largest effect on attitudes, followed by pleasure and knowledge management. On the contrary, perceived risk has a smaller effect on attitudes. In the Asian model, ease of use and perceived pleasure were found not to have a direct effect on intention to use. However, because attitudes generally affect the intention to use, perceived usefulness, pleasure, risk, and knowledge management may be considered key factors in attitude development from which usage intention arises. In conclusion, perceived usefulness, pleasure, and the level of knowledge management have an effect on attitude formation in both Asian and European consumers, and such attitudes shape these consumers' intention to use. Furthermore, the hypotheses that ease of use and perceived pleasure affect usage intention are rejected. However, ease of use, perceived risk, and innovativeness showed different results. Perceived risk had no effect on attitude formation among Asians, while ease of use and innovativeness had no effect on attitudes among Europeans.

  • PDF

Performance analysis of Frequent Itemset Mining Technique based on Transaction Weight Constraints (트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 기법의 성능분석)

  • Yun, Unil;Pyun, Gwangbum
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • In recent years, frequent itemset mining for considering the importance of each item has been intensively studied as one of important issues in the data mining field. According to strategies utilizing the item importance, itemset mining approaches for discovering itemsets based on the item importance are classified as follows: weighted frequent itemset mining, frequent itemset mining using transactional weights, and utility itemset mining. In this paper, we perform empirical analysis with respect to frequent itemset mining algorithms based on transactional weights. The mining algorithms compute transactional weights by utilizing the weight for each item in large databases. In addition, these algorithms discover weighted frequent itemsets on the basis of the item frequency and weight of each transaction. Consequently, we can see the importance of a certain transaction through the database analysis because the weight for the transaction has higher value if it contains many items with high values. We not only analyze the advantages and disadvantages but also compare the performance of the most famous algorithms in the frequent itemset mining field based on the transactional weights. As a representative of the frequent itemset mining using transactional weights, WIS introduces the concept and strategies of transactional weights. In addition, there are various other state-of-the-art algorithms, WIT-FWIs, WIT-FWIs-MODIFY, and WIT-FWIs-DIFF, for extracting itemsets with the weight information. To efficiently conduct processes for mining weighted frequent itemsets, three algorithms use the special Lattice-like data structure, called WIT-tree. The algorithms do not need to an additional database scanning operation after the construction of WIT-tree is finished since each node of WIT-tree has item information such as item and transaction IDs. In particular, the traditional algorithms conduct a number of database scanning operations to mine weighted itemsets, whereas the algorithms based on WIT-tree solve the overhead problem that can occur in the mining processes by reading databases only one time. Additionally, the algorithms use the technique for generating each new itemset of length N+1 on the basis of two different itemsets of length N. To discover new weighted itemsets, WIT-FWIs performs the itemset combination processes by using the information of transactions that contain all the itemsets. WIT-FWIs-MODIFY has a unique feature decreasing operations for calculating the frequency of the new itemset. WIT-FWIs-DIFF utilizes a technique using the difference of two itemsets. To compare and analyze the performance of the algorithms in various environments, we use real datasets of two types (i.e., dense and sparse) in terms of the runtime and maximum memory usage. Moreover, a scalability test is conducted to evaluate the stability for each algorithm when the size of a database is changed. As a result, WIT-FWIs and WIT-FWIs-MODIFY show the best performance in the dense dataset, and in sparse dataset, WIT-FWI-DIFF has mining efficiency better than the other algorithms. Compared to the algorithms using WIT-tree, WIS based on the Apriori technique has the worst efficiency because it requires a large number of computations more than the others on average.

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.

An Exploratory Study on the Competition Patterns Between Internet Sites in Korea (한국 인터넷사이트들의 산업별 경쟁유형에 대한 탐색적 연구)

  • Park, Yoonseo;Kim, Yongsik
    • Asia Marketing Journal
    • /
    • v.12 no.4
    • /
    • pp.79-111
    • /
    • 2011
  • Digital economy has grown rapidly so that the new business area called 'Internet business' has been dramatically extended as time goes on. However, in the case of Internet business, market shares of individual companies seem to fluctuate very extremely. Thus marketing managers who operate the Internet sites have seriously observed the competition structure of the Internet business market and carefully analyzed the competitors' behavior in order to achieve their own business goals in the market. The newly created Internet business might differ from the offline ones in management styles, because it has totally different business circumstances when compared with the existing offline businesses. Thus, there should be a lot of researches for finding the solutions about what the features of Internet business are and how the management style of those Internet business companies should be changed. Most marketing literatures related to the Internet business have focused on individual business markets. Specifically, many researchers have studied the Internet portal sites and the Internet shopping mall sites, which are the most general forms of Internet business. On the other hand, this study focuses on the entire Internet business industry to understand the competitive circumstance of online market. This approach makes it possible not only to have a broader view to comprehend overall e-business industry, but also to understand the differences in competition structures among Internet business markets. We used time-series data of Internet connection rates by consumers as the basic data to figure out the competition patterns in the Internet business markets. Specifically, the data for this research was obtained from one of Internet ranking sites, 'Fian'. The Internet business ranking data is obtained based on web surfing record of some pre-selected sample group where the possibility of double-count for page-views is controlled by method of same IP check. The ranking site offers several data which are very useful for comparison and analysis of competitive sites. The Fian site divides the Internet business areas into 34 area and offers market shares of big 5 sites which are on high rank in each category daily. We collected the daily market share data about Internet sites on each area from April 22, 2008 to August 5, 2008, where some errors of data was found and 30 business area data were finally used for our research after the data purification. This study performed several empirical analyses in focusing on market shares of each site to understand the competition among sites in Internet business of Korea. We tried to perform more statistically precise analysis for looking into business fields with similar competitive structures by applying the cluster analysis to the data. The research results are as follows. First, the leading sites in each area were classified into three groups based on averages and standard deviations of daily market shares. The first group includes the sites with the lowest market shares, which give more increased convenience to consumers by offering the Internet sites as complimentary services for existing offline services. The second group includes sites with medium level of market shares, where the site users are limited to specific small group. The third group includes sites with the highest market shares, which usually require online registration in advance and have difficulty in switching to another site. Second, we analyzed the second place sites in each business area because it may help us understand the competitive power of the strongest competitor against the leading site. The second place sites in each business area were classified into four groups based on averages and standard deviations of daily market shares. The four groups are the sites showing consistent inferiority compared to the leading sites, the sites with relatively high volatility and medium level of shares, the sites with relatively low volatility and medium level of shares, the sites with relatively low volatility and high level of shares whose gaps are not big compared to the leading sites. Except 'web agency' area, these second place sites show relatively stable shares below 0.1 point of standard deviation. Third, we also classified the types of relative strength between leading sites and the second place sites by applying the cluster analysis to the gap values of market shares between two sites. They were also classified into four groups, the sites with the relatively lowest gaps even though the values of standard deviation are various, the sites with under the average level of gaps, the sites with over the average level of gaps, the sites with the relatively higher gaps and lower volatility. Then we also found that while the areas with relatively bigger gap values usually have smaller standard deviation values, the areas with very small differences between the first and the second sites have a wider range of standard deviation values. The practical and theoretical implications of this study are as follows. First, the result of this study might provide the current market participants with the useful information to understand the competitive circumstance of the market and build the effective new business strategy for the market success. Also it might be useful to help new potential companies find a new business area and set up successful competitive strategies. Second, it might help Internet marketing researchers take a macro view of the overall Internet market so that make possible to begin the new studies on overall Internet market beyond individual Internet market studies.

  • PDF

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (비정형 텍스트 분석을 활용한 이슈의 동적 변이과정 고찰)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Owing to the extensive use of Web media and the development of the IT industry, a large amount of data has been generated, shared, and stored. Nowadays, various types of unstructured data such as image, sound, video, and text are distributed through Web media. Therefore, many attempts have been made in recent years to discover new value through an analysis of these unstructured data. Among these types of unstructured data, text is recognized as the most representative method for users to express and share their opinions on the Web. In this sense, demand for obtaining new insights through text analysis is steadily increasing. Accordingly, text mining is increasingly being used for different purposes in various fields. In particular, issue tracking is being widely studied not only in the academic world but also in industries because it can be used to extract various issues from text such as news, (SocialNetworkServices) to analyze the trends of these issues. Conventionally, issue tracking is used to identify major issues sustained over a long period of time through topic modeling and to analyze the detailed distribution of documents involved in each issue. However, because conventional issue tracking assumes that the content composing each issue does not change throughout the entire tracking period, it cannot represent the dynamic mutation process of detailed issues that can be created, merged, divided, and deleted between these periods. Moreover, because only keywords that appear consistently throughout the entire period can be derived as issue keywords, concrete issue keywords such as "nuclear test" and "separated families" may be concealed by more general issue keywords such as "North Korea" in an analysis over a long period of time. This implies that many meaningful but short-lived issues cannot be discovered by conventional issue tracking. Note that detailed keywords are preferable to general keywords because the former can be clues for providing actionable strategies. To overcome these limitations, we performed an independent analysis on the documents of each detailed period. We generated an issue flow diagram based on the similarity of each issue between two consecutive periods. The issue transition pattern among categories was analyzed by using the category information of each document. In this study, we then applied the proposed methodology to a real case of 53,739 news articles. We derived an issue flow diagram from the articles. We then proposed the following useful application scenarios for the issue flow diagram presented in the experiment section. First, we can identify an issue that actively appears during a certain period and promptly disappears in the next period. Second, the preceding and following issues of a particular issue can be easily discovered from the issue flow diagram. This implies that our methodology can be used to discover the association between inter-period issues. Finally, an interesting pattern of one-way and two-way transitions was discovered by analyzing the transition patterns of issues through category analysis. Thus, we discovered that a pair of mutually similar categories induces two-way transitions. In contrast, one-way transitions can be recognized as an indicator that issues in a certain category tend to be influenced by other issues in another category. For practical application of the proposed methodology, high-quality word and stop word dictionaries need to be constructed. In addition, not only the number of documents but also additional meta-information such as the read counts, written time, and comments of documents should be analyzed. A rigorous performance evaluation or validation of the proposed methodology should be performed in future works.

Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window (랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가)

  • Pyun, Gwangbum;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • With the development of online service, recent forms of databases have been changed from static database structures to dynamic stream database structures. Previous data mining techniques have been used as tools of decision making such as establishment of marketing strategies and DNA analyses. However, the capability to analyze real-time data more quickly is necessary in the recent interesting areas such as sensor network, robotics, and artificial intelligence. Landmark window-based frequent pattern mining, one of the stream mining approaches, performs mining operations with respect to parts of databases or each transaction of them, instead of all the data. In this paper, we analyze and evaluate the techniques of the well-known landmark window-based frequent pattern mining algorithms, called Lossy counting and hMiner. When Lossy counting mines frequent patterns from a set of new transactions, it performs union operations between the previous and current mining results. hMiner, which is a state-of-the-art algorithm based on the landmark window model, conducts mining operations whenever a new transaction occurs. Since hMiner extracts frequent patterns as soon as a new transaction is entered, we can obtain the latest mining results reflecting real-time information. For this reason, such algorithms are also called online mining approaches. We evaluate and compare the performance of the primitive algorithm, Lossy counting and the latest one, hMiner. As the criteria of our performance analysis, we first consider algorithms' total runtime and average processing time per transaction. In addition, to compare the efficiency of storage structures between them, their maximum memory usage is also evaluated. Lastly, we show how stably the two algorithms conduct their mining works with respect to the databases that feature gradually increasing items. With respect to the evaluation results of mining time and transaction processing, hMiner has higher speed than that of Lossy counting. Since hMiner stores candidate frequent patterns in a hash method, it can directly access candidate frequent patterns. Meanwhile, Lossy counting stores them in a lattice manner; thus, it has to search for multiple nodes in order to access the candidate frequent patterns. On the other hand, hMiner shows worse performance than that of Lossy counting in terms of maximum memory usage. hMiner should have all of the information for candidate frequent patterns to store them to hash's buckets, while Lossy counting stores them, reducing their information by using the lattice method. Since the storage of Lossy counting can share items concurrently included in multiple patterns, its memory usage is more efficient than that of hMiner. However, hMiner presents better efficiency than that of Lossy counting with respect to scalability evaluation due to the following reasons. If the number of items is increased, shared items are decreased in contrast; thereby, Lossy counting's memory efficiency is weakened. Furthermore, if the number of transactions becomes higher, its pruning effect becomes worse. From the experimental results, we can determine that the landmark window-based frequent pattern mining algorithms are suitable for real-time systems although they require a significant amount of memory. Hence, we need to improve their data structures more efficiently in order to utilize them additionally in resource-constrained environments such as WSN(Wireless sensor network).

Sustainable Development and Sustainability Marketing - Integration of customer and socio-ecological aspect in Marketing concept - (글로벌 기업 환경 변화의 새로운 패러다임으로서 지속가능한 발전과 마케팅 - 지속가능마케팅의 의사결정 지향적 컨셉 -)

  • Nam, Sang-Min;Kim, Jong-Ho;Noh, Jung-Koo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.3
    • /
    • pp.83-108
    • /
    • 2007
  • Since the 1992 UN Conference for Environment and Development held in Rio de Jaineiro, Sustainable Development has become the global thesis. More than 170 countries signed the Agenda 21 for the sustainable action plan, and adopted the sustainability concept as the key concept of dealing with the environmental, social, ethical, and economic problem. Sustainability is one of the main marketing challenges in the 21st century. By integrating social and ecological criteria, marketing may can make valuable contributions to sustainable development. Regarding the sustainability marketing, it is difficult to find the domestic marketing research on the thesis of sustainable development, and this is the definite evidence that the Korean marketing researchers do not realize the importance of the thesis of sustainable development which is internationally suggested as the new paradigm of change. The purpose of this study is to build the conceptual background and explore the research direction in order to introduce and adopt the concept of sustainable development in the domestic marketing research field. The present paper proposes a comprehensive conception of sustainability marketing, defined by six step: analysis of social-ecological problems; analysis of consumer behavior; normative sustainability marketing; strategic sustainability marketing; instrumental sustainability marketing; and transformative sustainability marketing. The aim of the paper are to clarify the concept of sustainability marketing. To accomplish this research purpose we discuss the sustainable development which is the conceptual background of sustainability marketing, analyze the characteristics of the sustainability marketing, and finally summarize the research results and present the suggestions for further research. Sustainability marketing embraces the idea of sustainable development, a development that meets the needs of the present without compromising the ability of future generation to meet their own needs. Sustainability Marketing goes beyond conventional marketing thinking. If marketing is about satisfying customer needs and building profitable relationships with customers, sustainability marketing may be defined as building and maintaining sustainable relationships with customers, the social environment and natural environment. By creating social and environmental value, sustainability marketing tries to deliver and increase customer value. Sustainability Marketing aims at creating customer value, social value and environmental value. Sustainability marketing integrates social and ecological criteria into the whole process of marketing, and can be differentiated in six steps: (1) Analysis of the social and ecological problems, generally and specifically with respect to products which satisfy customer needs and wants; (2) Analysis of customer behavior with special aspect to social and ecological concerns; (3) Corporate commitments to sustainable development in the mission statement, development of sustainability visions, formulation of sustainable principles and guideline, setting of socio-ecological marketing objectives and goals (normative aspects of sustainability marketing); (4) Sustainability segmentation, targeting and positioning, and timing of market entry(strategic aspects of sustainability marketing); (5)Integration of social and ecological criteria into the marketing-mix, i.e. products, services and brands, pricing, distribution and communication(instrumental aspects of sustainability marketing); (6) Participation in public and political change processes, which transform existing institutions towards sustainability(transformative aspects of sustainability marketing). The first two steps begin with an analysis of the company situation. In sustainability marketing it is crucial not just to know consumer needs and wants, but also to find out about the ecological and social problems of products along their whole life cycle. The intersection of socio-ecological problems and consumer wants sets the ground for sustainability marketing. Step three to five describe the implementation of sustainability marketing. Social and ecological criteria are fully integrated into the mission statement, strategies and marketing-mix. Step six is one of the specifics of sustainability marketing. It is about the commitment of company to sustainable development and their active participation in public and political processes in order to change the existing framework in favor of sustainability.

  • PDF