Journal of Information Science Theory and Practice
/
v.11
no.1
/
pp.31-48
/
2023
Digital service transformation study is a part of research in the field of digital transformation, which is devoted to exploring the transformations that occur in digital service products, which have been intensely explored in recent years to address digital disruption. Several concepts and definitions of digital service transformation have emerged as a result of an approach from the point of view of digital transformation and digital services concepts. This paper is organized to provide a foundational understanding of digital service transformation terminology. This paper uses the systematic literature review method to compile 52 qualified articles from previous studies. We conduct an analysis and synthesis of articles to answer research questions. The results of this study are a descriptive summary of research in the digital service transformation field, determining digital service transformation terminology and components, and also a proposed digital service transformation model to explain the position of transformation in digital service products in the overall transformation process. We construct this model using the findings of previously determined components synthesis.
As roles of service industry in economy rises, studies related with service quality were increased continuously. We review 131 papers domestic literatures was published from 2003 during the latest 5 years to 2007 and classify them on service industry, measurement model and research contents. Also, we analyze research contents and suggest future research issues in service management areas.
Studies on online review have carried out analysis of the rating and topic as a whole. However, it is necessary to analyze opinions on various dimensions of service quality. This study classifies reviews of healthcare services into service quality dimensions, and proposes a method to identify words that are mainly referred to in each dimension. Service quality was based on the dimensions provided by SERVQUAL, and patient reviews have collected from NHSChoice. The 2,000 sentences sampled were classified into service quality dimension of SERVQUAL and a method of extracting important keywords from sentences by service quality dimension was suggested. The RAKE algorithm is used to extract key words from a single document and an index is considered to consider frequently used words in various documents. Since we need to identify key words in various reviews, we have considered frequency and discrimination (IDF) at the same time, rather than identifying key words based only on the RAKE score. In SERVQUAL dimension, we identified the words that patients mentioned mainly, and also identified the words that patients mainly refer to by review rating.
Background: This study aimed to examine whether cases of punishing false claimants threat general physicians to check their medical cost claims with care to avoid being suspected, and identify empirically general deterrence effects of the on-site investigation system in the Korean National Health Insurance. Methods: 800 clinics were selected among a total of 15,443 clinics that had no experience of on-site investigation until June 2007 using a stratified proportional systematic sampling method. We conducted logistic multiple regression to examine the association between factors related to provider's perception of on-site investigation and high level of perceived deterrence referring to fear of punishment after adjusting provider's service experiences and general characteristics. Results: The probability of high perceived deterrence was higher 1.7 times (CI: 1.13-2.56), 2.73 times (CI: 1.68-4.45) each among clinics exchanging the information once or more per year or once or more for 2-3 months than among clinics no exchanging the information about on-site investigation. Also, the probability of high perceived deterrence was higher 2.27 times (CI: 1.28-4.45) among clinics that knows more than 3 health care institutions having experienced an on-site investigation than among clinics knowing no case. Conclusion: A clinic knowing more punishment cases by onsite investigation and exchanging more frequently information about on-site investigation is likely to present high perceived deterrence. This result will provide important information to enlarge preventive effects of on-site investigation on fraud and abuse claims.
Kim, Su-Kyeong;Kim, Hee-Eun;Back, Mi-Sook;Lee, Suk-Hyang
Korean Journal of Clinical Pharmacy
/
v.20
no.3
/
pp.242-247
/
2010
Controlling inappropriate antibiotics prescribing for acute upper respiratory infections(URI) is a very important for prudent use of antibiotics and resistance control. Health Insurance Review and Assessment Service (HIRA) introduced Prescribing Evaluation Program and publicly reported antibiotics prescribing rate for URI of each health institution. We performed segmented regression analysis of interrupted time series to estimate the effect of public report on antibiotics prescribing rate using national health insurance claims data. The results indicate that just before the public report period, clinics' monthly antibiotics prescribing rate for URI was 66.7%. Right after the public report, the estimated antibiotics prescribing rate dropped abruptly by 12.3%p. There was no significant changes in month-to-month trend in the prescribing rate before and after the intervention.
With the rising attention dedicated to research ethics, the responsibility of researchers to comply with research ethics is also highlighted. Among a number of research ethics obligations that researchers should abide by, an institutional review board (IRB) review is the most essential step to be taken before launching research. As the health service research field grapples with human subjects, it closely aligns with IRB deliberation. However, it seems that researchers still do not fully understand their obligations of IRB reviews. Due to the nature of health services research, there are many cases that are exempt from IRB reviews, which often elicits confusion in the research field. On that note, we aim to explore the issues regarding IRB reviews that health service researchers need to know.
The study analyzes reviews of hardware products, customer service products, and products that take the form of a convergence of hardware and cloud services in ICT using text mining. We derive keywords of each review and find the differentiation of words that are used to derive topics. A cluster analysis is performed to categorize reviews into their respective clusters. Through this study, we observed which keywords are most often used for each product type and found topics that express the characteristics of products and services using topic modeling. We derived keywords such as "professional" and "technician" which are topics that suggest the excellence of the service provider in the review of service products. Further, we identified adjectives with positive connotations such as "favorite", "fine", "fun", "nice", "smart", "unlimited", and "useful" from Amazon Eco review, an integrated product and service. Using the cluster analysis, the entire review was clustered into three groups, and three product type reviews exclusively resulted in belonging to each different cluster. The study analyzed the differences whereby consumer needs are expressed differently in reviews depending on the type of product and suggested that it is necessary to differentiate product planning and marketing promotion according to the product type in practice.
Journal of Korean Academy of Nursing Administration
/
v.14
no.3
/
pp.229-240
/
2008
Purpose: To develop the patient classification system based on the resource utilization for reimbursement of long-term care hospitals in Korea. Method: Health Insurance Review & Assessment Service (HIRA) conducted a survey in July 2006 that included 2,899 patients from 35 long-term care hospitals. To calculate resource utilization, we measured care time of direct care staff (physicians, nursing personnel, physical and occupational therapists, social workers). The survey of patient characteristics included ADL, cognitive and behavioral status, diseases and treatments. Major category criteria was developed by modified delphi method from 9 experts. Each category was divided into 2-3 groups by ADL using tree regression. Relative resource use was expressed as a case mix index (CMI) calculated as a proportion of mean resource use. Result: This patient classification system composed of 6 major categories (ultra high medical care, high medical care, medium medical care, behavioral problem, impaired cognition and reduced physical function) and 11 subgroups by ADL score. The differences of CMI between groups were statistically significant (p<.0001). Homogeneity of groups was examined by total coefficient of variation (CV) of CMI. The range of CV was 29.68-40.77%. Conclusions: This patient classification system is feasible for reimbursement of long-term care hospitals.
This study aims to compare the experience of selected countries in operating separate payment system for new healthcare technology and to find implications for price setting in Korea. We analyzed the related reports, papers, laws, regulations, and related agencies' online materials from five selected countries including the United States, Japan, Taiwan, Germany, and France. Each country has its own additional payment system for new technologies: transitional pass-through payment and new technology ambulatory payment classification for outpatient care and new technology add-on payment for inpatient care (USA), an extra payment for materials with new functions or new treatment (C1, C2; Japan), an additional payment system for new special treatment materials (Taiwan), a short-term extra funding for new diagnosis and treatment (NUB; Germany), and list of additional payments for new medical devices (France). The technology should be proven safe and effective in order to get approval for an additional payment. The price is determined by considering the actual cost of providing the technology and the cost of existing similar technologies listed in the benefits package. The revision cycle of the additional payment is 1 to 4 years. The cost or usage is monitored during that period and then integrated into the existing fee schedule or removed from the list. We conclude that it is important to set the explicit criteria to select services eligible for additional payment, to collect and analyze data to assess eligibility and to set the payment, to monitor the usage or cost, and to make follow-up measures in price setting for new health technologies in Korea.
Journal of Korea Society of Digital Industry and Information Management
/
v.15
no.1
/
pp.87-97
/
2019
Reaction of people is importantly considered about specific case as a social network service grows. In the previous research on analysis of social network service, they predicted tendency of interesting topic by giving scores to sentences written by user. Based on previous study we proceeded research of sentiment analysis for social network service's sentences, which predict the result as positive or negative for movie reviews. In this study, we used movie review to get high accuracy. We classify the movie review into positive or negative based on the score for learning. Also, we performed embedding and morpheme analysis on movie review. We could predict learning result as positive or negative with a number 0 and 1 by applying the model based on learning result to social network service. Experimental result show accuracy of about 80% in predicting sentence as positive or negative.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.