• Title/Summary/Keyword: Server On/Off

Search Result 132, Processing Time 0.025 seconds

Dynamic Shutdown of Server Power Mode Control for Saving Energy in a Server Cluster Environment (서버 클러스터 환경에서 에너지 절약을 위한 서버 전원 모드 제어에서의 동적 종료)

  • Kim, Hoyeon;Ham, Chihwan;Kwak, Hukeun;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.7
    • /
    • pp.283-292
    • /
    • 2013
  • In order to ensure high performance, all the servers in an existing server cluster are always On regardless of number of real-time requests. They ensure QoS, but waste server power if some of them are idle. To save energy consumed by servers, the server power mode control was developed by shutdowning a server when a server is not needed. There are two types of server power mode control depending on when a server is actually turned off if the server is selected to be off: static or dynamic. In a static mode, the server power is actually turned off after a fixed time delay from the time of the server selection. In a dynamic mode, server power is actually turned off if all the services served in the server are done. This corresponds to a turn off after a variable time delay. The static mdoe has disadvantages. It takes much time to find an optimal shutdown time manually through repeated experiments. In this paper, we propose a dynamic shutdown method to overcome the disadvantages of static shutdown. The proposed method allows to guarantee user QoS with good power-saving because it automatically approaches an optimal shutdown time. We performed experiments using 30 PCs cluster. Experimental results show that the proposed dynamic shutdown method is almost same as the best static shutdown in terms of power saving, but better than the best static shutdown in terms of QoS.

Enhanced distributed streaming system based on RTP/RTSP in resurgent ability (RTP/RTSP 기반 재생기능이 향상된 분산 스트리밍 시스템)

  • Lee, Joo-Yoen;Kim, Jung-Hak;Jung, Jae-Il
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.213-216
    • /
    • 2005
  • In this paper, we propose the redirect streaming service model to enhance resurgent ability. The system consists of a redirect server, local streaming servers and clients. A redirect server searches the best streaming server. And streaming servers starts a requested service or resumes it when in a trouble. RTSP/RTP is one of the effective solutions to improve QOS in VOD, however a service can be broken off by an overloaded server or network especially in live. We designed and implemented not only a distributed streaming system that solves the broken-off service to enhance a resurgent system, but also DSSP, distributed streaming service protocol, which is adopted to implement this model. Those will improve the performance of streaming service using RTP/RTSP and be contributed to a real time streaming research to solve a service trouble.

  • PDF

An Improved Estimation Model of Server Power Consumption for Saving Energy in a Server Cluster Environment (서버 클러스터 환경에서 에너지 절약을 위한 향상된 서버 전력 소비 추정 모델)

  • Kim, Dong-Jun;Kwak, Hu-Keun;Kwon, Hui-Ung;Kim, Young-Jong;Chung, Kyu-Sik
    • The KIPS Transactions:PartA
    • /
    • v.19A no.3
    • /
    • pp.139-146
    • /
    • 2012
  • In the server cluster environment, one of the ways saving energy is to control server's power according to traffic conditions. This is to determine the ON/OFF state of servers according to energy usage of data center and each server. To do this, we need a way to estimate each server's energy. In this paper, we use a software-based power consumption estimation model because it is more efficient than the hardware model using power meter in terms of energy and cost. The traditional software-based power consumption estimation model has a drawback in that it doesn't know well the computing status of servers because it uses only the idle status field of CPU. Therefore it doesn't estimate consumption power effectively. In this paper, we present a CPU field based power consumption estimation model to estimate more accurate than the two traditional models (CPU/Disk/Memory utilization based power consumption estimation model and CPU idle utilization based power consumption estimation model) by using the various status fields of CPU to get the CPU status of servers and the overall status of system. We performed experiments using 2 PCs and compared the power consumption estimated by the power consumption model (software) with that measured by the power meter (hardware). The experimental results show that the traditional model has about 8-15% average error rate but our proposed model has about 2% average error rate.

A Design of Dynamic Simulator of Articulated Robot (다관절 로봇의 동적 시뮬레이터 설계)

  • Park, In-Man;Jung, Seong-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.75-81
    • /
    • 2015
  • This study proposes an articulated robot control system using an on/off-line robot graphic simulator with multiple networks. The proposed robot control system consists of a robot simulator using OpenGL, a robot controller based on a DSP(TMS320) motion board, and the server/client communication by multiple networks. Each client can control the real robot through a server and can compare the real robot motion with the virtual robot motion in the simulation. Also, all clients can check and analyze the robot motion simultaneously through the motion image and data of the real robot. In order to show the validity of the presented system, we present an experimental result for a 6-axis vertical articulated robot. The proposed robot control system is useful, especially, in the industrial fields using remote robot control as well as industrial production automation with many clients.

One Pass Identification processing Password-based

  • Park, Byung-Jun;Park, Jong-Min
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.166-169
    • /
    • 2006
  • Almost all network systems provide an authentication mechanism based on user ID and password. In such system, it is easy to obtain the user password using a sniffer program with illegal eavesdropping. The one-time password and challenge-response method are useful authentication schemes that protect the user passwords against eavesdropping. In client/server environments, the one-time password scheme using time is especially useful because it solves the synchronization problem. In this paper, we present a new identification scheme: OPI(One Pass Identification). The security of OPI is based on the square root problem, and OPI is secure: against the well known attacks including pre-play attack, off-line dictionary attack and server comprise. A number of pass of OPI is one, and OPI processes the password and does not need the key. We think that OPI is excellent for the consuming time to verify the prover.

A Study on Efficient Cut-off Point between Hot and Cold Items for Data Broadcast Scheduling (데이터 방송 스케줄링에서 핫아이템과 콜드아이템의 분리를 위한 효율적인 컷오프 포인트에 관한 연구)

  • Kang, Sang-Hyuk
    • Journal of Broadcast Engineering
    • /
    • v.15 no.6
    • /
    • pp.845-852
    • /
    • 2010
  • Collecting statistics from client requests, the broadcast server partitions data items into hot and cold-item sets with the optimal cut-off point. Hot items are broadcast periodically with periods based on their access probabilities. In a time slot with no hot items scheduled, the server broadcasts a proper cold item considering the waiting time and the number of outstanding requests. We analyze the optimal the cut-off point by calculating average response time as a function of the cut-off point. Simulation results show that our proposed algorithm outperforms existing methods in various circumstances.

Location Tracking and Remote Monitoring system of Home residents using ON/OFF Switches and Sensors (ON/OFF 스위치와 센서를 이용한 홈 거주자의 위치추적 및 원격모니터링 시스템)

  • Ahn Dong-In;Kim Myung-Hee;Joo Su-Chong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.1
    • /
    • pp.66-77
    • /
    • 2006
  • In this paper, we researched the searching and tracking locations of a home resident using ON/OFF switches and sensors and designed a remote monitoring system. As an implementation environment, this system is developed on the base of the distributed object group framework we have developed from previous works. In order to trace the moving locations of a home resident, we firstly showed a home structure which attaches ON/OFF switches and sensors to home appliances and indoor facilities being fixed in home. Whenever a home resident opens/closes these objects, the signals operated from ON/OFF switches and sensors are sent to a home server system. In this time, the real locations of ON/OFF switches and sensors that the signals are being occurred must be the current location that he/she stays. A home server system provides the functionalities that map the real location of a resident in home to virtual location designed on remote desk-tops or terminals like PDAs, and that construct a healthcare database consisted of moving patterns, moving ranges, momentum for analyzing the given searching locations and times Finally, this system provides these information for remotely monitoring services.

Security in the Password-based Identification

  • Park, Byung-Jun;Park, Jong-Min
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.346-350
    • /
    • 2007
  • Almost all network systems provide an authentication mechanism based on user ID and password. In such system, it is easy to obtain the user password using a sniffer program with illegal eavesdropping. The one-time password and challenge-response method are useful authentication schemes that protect the user passwords against eavesdropping. In client/server environments, the one-time password scheme using time is especially useful because it solves the synchronization problem. It is the stability that is based on Square Root Problem, and we would like to suggest PBSI(Password Based Secure Identification), enhancing the stability, for all of the well-known attacks by now including Off-line dictionary attack, password file compromise, Server and so on. The PBSI is also excellent in the aspect of the performance.

Human Memorable Password based Efficient and Secure Identification

  • Park Jong-Min
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.213-216
    • /
    • 2005
  • Almost all network systems provide an authentication mechanism based on user ID and password. In such system, it is easy to obtain the user password using a sniffer program with illegal eavesdropping. The one-time password and challenge-response method are useful authentication schemes that protect the user passwords against eavesdropping. In client/server environments, the one-time password scheme using time is especially useful because it solves the synchronization problem. It is the stability that is based on Square Root Problem, and we would like to suggest PBI(password Based Identification), enhancing the stability, for all of the well-known attacks by now including Off-line dictionary attack, password file compromise, Server and so on. The PBI is also excellent in the aspect of the performance.

A Home Automation system based on Smart phone (스마트 폰 기반 홈 자동제어시스템 설계 및 구현)

  • Jang, Yun-Jae;Park, Kyoung-Wook;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.4
    • /
    • pp.589-594
    • /
    • 2011
  • Smart Home or Home Network technology is one that continuously creates added value, making a better life. This paper designed and developed a smart home control system using smart phone. This proposed smart home system consists of home server control system, remote smart application system and home node structure. Home node structure, in detail, is composed of intrusion detection, gas leakage or gas valve control, door lock, automatic curtain, ventilation control and On/Off control modules and these modules are controlled at home server. Home server makes it easy to control home automatic control system anytime, anywhere as it provides remote interface that enables control via smartphone and user interface in itself.