• 제목/요약/키워드: Serratia proteamaculans

검색결과 5건 처리시간 0.02초

Polyphasic Assignment of a Highly Proteolytic Bacterium Isolated from a Spider to Serratia proteamaculans

  • Kwak, Jang-Yul;Lee, Dong-Hun;Park, Youn-Dong;Kim, Seung-Bum;Maeng, Jin-Soo;Oh, Hyun-Woo;Park, Ho-Yong;Bae, Kyung-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권10호
    • /
    • pp.1537-1543
    • /
    • 2006
  • A bacterial strain named HY-3 that produces a highly active extracellular protease was isolated from the digestive tract of a spider, Nephila clavata. The bacterium was a Gram-negative, oxidase-negative, catalase-positive, nonhalophilic, nitrate-reducing, facultative anaerobe. Transmission and scanning electron microscopies demonstrated that the isolate was non-spare-forming, straight, rod-shaped, and motile by peritrichous flagella. The G+C content of the DNA was 57.0 mol%. The isoprenoid quinone type was ubiquinone with 8 isoprene units (Q-8). The morphological and biochemical characteristics including the predominant fatty acid and phospholipids profiles placed the isolate HY-3 in the family Enterobacteriaceae. Further biochemical characterization and phylogenetic studies including determination of an almost complete 16S ribosomal DNA sequence suggested that the bacterium was closely related to the genus Serratia. DNA-DNA hybridization analysis revealed that this extracellular protease-producing strain belongs to Serratia proteamaculans, which is also known far its association with insects.

Chitinase를 생산하는 길항미생물 Serratia sp. 3095의 선발과 Fusarium 속에 대한 항진균성 (Isolation and Antifungal Activity of the Chitinase Producing Bacterium Serratia sp. 3095 as Antagonistic Bacterium against Fusarium sp.)

  • 이은탁;김상달
    • Applied Biological Chemistry
    • /
    • 제42권3호
    • /
    • pp.181-187
    • /
    • 1999
  • 경주지역의 토양으로부터 Fusarium 속 식물병원균에 길항력을 갖는 chitinase 생산성 길항미생물을 분리할 수 있었으며, 이를 분류학적으로 동정하여 본 결과 Serratia proteamaculans 3095로 동정할 수 있었다. 이 균주가 생성하는 chitinase의 생성조건을 조사한 결과 탄소원으로 colloidal chitin이 가장 좋았으며 그 최적 농도는 0.15%이었고, glucose에 의해 chitinase 생산 유도를 억제받는 효소임을 알 수 있었다. 질소원에 의한 영향은 $(NH_4)_2SO_4,\;(NH_4)Cl$, peptone 등에 의해 chitinase 생산성이 증가되었고, $(NH_4)_2SO_4$와 peptone을 각각 0.1%씩 첨가하였을 때 chitinase 생산이 가장 좋았다. 또한 시드름병균 Fusarium oxysporum을 대상으로 in vitro, in vivo pot 실험을 통해 Serratia sp. 3095의 강한 방제력을 검증할 수 있었다.

  • PDF

무당거미에서 분리한 Serratia proteamaculans에서 분비되는 단백질분해효소의 생화학적 특성 (Biochemical Characterization of an Extracellular Protease in Serratia proteamaculans Isolated from a Spider)

  • 이기은;김철희;권현정;곽장열;신동하;박두상;배경숙;박호용
    • 미생물학회지
    • /
    • 제40권4호
    • /
    • pp.269-274
    • /
    • 2004
  • 거미의 중장에서 분리한 장내 세균인 Serratia proteamaculans는 우유 단백질 배지상에서 투명환을 형성하는 것으로 보아 세포 외로 분비되는 단백질 분해효소를 생산함을 알 수 있었다. Zymogram을 사용한 단백질 분획의 활성 염색 실험에서 세포 외로 분비된 분자량 52 KD의 단백질이 높은 단백질분해 활성을 가진 것으로 추정되었다. 이 단백질 분해효소의 배양 상등액을 여과, 이온교환, 크로마토그래피 등의 방법을 사용하여 순수 정제하였다. 정제된 단백질 분해 효소는 pH 6.0과 10.0사이와 넓은 온도범위에서 상대적으로 높은 활성을 나타내었다. 1,10-phenanthroline과 EDTA등의 단백질분해효소 저해제를 처리하였을 때 단백질 분해 활성이 강하게 억제되며 $Zn^{2+}$이나 $Ca^{2+}$ 이온의 존재에 의해 단백질 분해효소의 활성이 증가되는 것으로 보아 이 효소가 금속성 단백질 분해효소임을 알 수 있었다.

Biochemical and Genetic Characterization of Arazyme, an Extracellular Metalloprotease Produced from Serratia proteamaculans HY-3

  • Kwak, Jang-Yul;Lee, Ki-Eun;Shin, Dong-Ha;Maeng, Jin-Soo;Park, Doo-Sang;Oh, Hyun-Woo;Son, Kwang-Hee;Bae, Kyung-Sook;Park, Ho-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.761-768
    • /
    • 2007
  • Serratia proteamaculans HY-3 isolated from the digestive tract of a spider produces an extracellular protease named arazyme, with an estimated molecular mass of 51.5 kDa. The purified enzyme was characterized as having high activities at wide pH and temperature ranges. We further characterized biochemical features of the enzymatic reactions under various reaction conditions. The protease efficiently hydrolyzed a broad range of protein substrates including albumin, keratin, and collagen. The dependence of enzymatic activities on the presence of metal ions such as calcium and zinc indicated that the enzyme is a metalloprotease, together with the previous observation that the proteolytic activity of the enzyme was not inhibited by aspartate, cysteine, or serine protease inhibitors, but strongly inhibited by 1,10-phenanthroline and EDTA. The araA gene encoding the exoprotease was isolated as a 5.6 kb BamHI fragment after PCR amplification using degenerate primers and subsequent Southern hybridization. The nucleotide sequence revealed that the deduced amino acid sequences shared extensive similarity with those of the serralysin family of metalloproteases from other enteric bacteria. A gene(inh) encoding a putative protease inhibitor was also identified immediately adjacent to the araA structural gene.

Gene Cloning, Expression, and Characterization of a New Carboxylesterase from Serratia sp. SES-01: Comparison with Escherichia coli BioHe Enzyme

  • Kwon, Min-A;Kim, Hyun-Suk;Oh, Joon-Young;Song, Bong-Keun;Song, Jae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권2호
    • /
    • pp.147-154
    • /
    • 2009
  • The carboxylesterase-encoding gene(bioHs) of a newly isolated strain, Serratia sp. SES-01, was cloned from the genomic DNA library by detecting formation of transparent halo around the colony on LB-tributyrin agar plates. The amino acid sequence of BioHs was highly similar to the members of the BioH enzyme family involved in the biotin biosynthetic pathway; it showed the highest similarity(91%) with that of Serratia proteamaculans. To compare BioHs with other BioH enzymes, the relatively well-known bioHe gene of E. coli was cloned with PCR. After we achieved high-level expression of soluble BioHs and BioHe through the exploration of different culture conditions, the purified BioHs and BioHe enzymes were characterized in terms of specificity, activity, and stability. BioHe was generally more robust to a change in temperature and pH and an addition of organic solvents than BioHs. The two enzymes exhibited a strong preference for carboxylesterase rather than for thioesterase and were optimal at relatively low temperatures($20-40^{\circ}C$) and alkaline pHs(7.5-9.0). The results in this study strongly suggested that both the BioHs and BioHe enzymes would be potential candidates for use as a carboxylesterase in many industrial applications.