• Title/Summary/Keyword: Serpentine Heat Exchanger

Search Result 6, Processing Time 0.021 seconds

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery (저온 폐열 회수용 진동형 히트 파이프 열교환기의 성능 평가에 관한 연구)

  • 안영태;이욱현;김정훈;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.368-376
    • /
    • 2001
  • Performance of heat exchanger was evaluated to heat exchanger using oscillating heat pipe for waste heat recovery of low temperature. Oscillating heat pipe used in this study was formed to the closed loop of serpentine shapes using copper tubes. Heat exchanger was formed to shell and tube type and composed of low finned tube. R-22 and R-141b were used to the working fluids of tube side and their charging ratio was 40%. And, water was used to the working fluid of shell side. As the experimental parameters, the inlet temperature difference of heating and cooling part of secondary fluid and the mass velocity of secondary fluid were used. The mass velocity of secondary fluid was changed from 90 kg/$m^2s\; to\;190 kg/m^2$s from the experimental results, heat recovery rate was linearly increased to the increment of the mass velocity of secondary fluid and the inlet temperature difference of secondary fluid. Finally, the performance of heat exchanger was evaluated by using $\varepsilon$-NTU method. It was found that NTU was about 1.5 when effectiveness was decided to 80%.

  • PDF

Performance Test of Low Temperature Waste Heat Recovery Heat Exchanger Using Self-excited Oscillating Heat Pipe (자려 진동형 히트 파이프를 이용한 저온 폐열 회수 열교환기의 성능 실험)

  • 이욱현;이종현;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.853-859
    • /
    • 2000
  • In this study, low temperature waste heat recovery heat exchanger was developed using a principle of self-excited oscillating heat pipe. The heat exchanger of serpentine type was composed of extruded flat aluminum tube with 6 channels (3 nm$\times$ 2.75nm) and louvered fin. The heat transfer area density of heat exchanger was $331.9 m^2/m^3$. Working fluid is R141b and charge ratio was 40% by volume. Heat transfer rate and the effectiveness of heat exchanger was primary concern of this study. As a result, the effectiveness of heat exchanger was about 0.4-0.67, and recovered waste heat rate was about 4.5 kW per one unit of heat exchanger.

  • PDF

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery

  • Bui, Ngoc-Hung;Kim, Ju-Won;Jang, In-Seung;Kang, Jeong-Kil;Kim, Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.73-81
    • /
    • 2003
  • The performance of heat exchanger using oscillating heat pipe (OHP) for low temperature waste heat recovery was evaluated. OHP used in this study was made from low finned copper tubes connected by many turns to become the closed loop of serpentine structure. The OHP heat exchanger was formed into shell and tube type. R-22 and R-141b were used as the working fluids of OHP with a fill ratio of 40 vol.%. Water was used as the working fluid of shell side. As the experimental parameters, the inlet temperature difference between heating and cooling water and the mass velocity of water were changed. The mass velocity of water was changed from 30 kg/$m^2$s to 92 kg/$m^2$s. The experimental results showed that the heat recovery rate linearly increased as the mass velocity and the inlet temperature difference of water increased. Finally, the performance of OHP heat exchanger was evaluated by $\varepsilon$-NTU method. It was found that the effectiveness would be 80% if NTU were about 1.5.

A Study of Performance of Roll-plate type fin-tube Heat Exchanger for the Refrigerator (냉장고용 롤-플레이트형 휜-관 열교환기의 성능에 관한 연구)

  • Ahn, Sung-Jun;Kim, Jong-Su;Kwon, Oh-Boong;Park, Yong-Jong;Ha, Young-Ju;Choi, Sang-Jo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2292-2297
    • /
    • 2008
  • Recently, a study on condensers for refrigerators has focused on new model which will cost less and will be more efficient. Some widely used condensers for domestic refrigerators are wire-and-tube type condenser, hot-wall type condenser, and spiral type condenser. Some companies which use the spiral type condenser at the moment try to develop a new type condenser which will cost less and will be as efficient as the spiral type. The new type condenser consists of a steel tube, steel plates and louver fins attached to the tube. The tube and the plate are bent into a single-passage serpentine shape.

  • PDF

Performance Analysis of an Automotive Air Conditioning System Using HFC-134a as an Alternative Refrigerant (HFC-134a를 대체냉매로 사용한 자동차 냉방시스템의 성능해석)

  • Han, D.Y.;Cho, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.406-420
    • /
    • 1995
  • As concerns increase over the dangers of environmental destruction on a global scale, CFC regulations have finally been carried out and some CFC's are expected to be phased out by the end of 1995. The research for alternative refrigerants is very demanding. The major activities related to alternative refrigerants are focused on two different areas; one is the development of mixed refrigerants by using the existing refrigerants, and the other is the development of new HFC refrigerants. One of the most promising alternative refrigerant for CFC-12 is HFC-134a. HFC-134a has often been used as a replacement of CFC-12 for automotive air-conditioners. However, due to different thermodynamic properties of HFC-134a, performances of the replaced system are degraded compared with those of the CFC-12 system. Sometimes, the complete redesign of the system is required. In order to analyse and design the new system effectively, the developement of a system simulation program, in which HFC-134a can be selected as a refrigerant, is recommended. Therefore, the summary of this research is as follows : (1) The various thermodynamic properties of HFC-134a are ana lysed and programmed. (2) The model for serpentine heat exchanger is developed and programmed. (3) These subroutines are integrated to develop to develop an automotive air conditioning system simulation program which is verified by the test results. (4) The verified program is used to analyse the performance of a selected automotive air conditioning system.

  • PDF