• Title/Summary/Keyword: Series stack

Search Result 72, Processing Time 0.022 seconds

The Study of the IGBT and Stack Parallel Operation for the 1.5MVA Medium Power Inverter (1.5MVA급 중용량 인버터용 IGBT 및 Stack 병렬 운전 연구)

  • Park Geon-Tae;Jung Ki-Chan;Kim Yeon-Dal;Jung Myung-Kil;Kim Du-Sik
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.402-405
    • /
    • 2004
  • In this paper, the parallel operation of the IGBT and power stack for easy capacity enlargement series in the medium power capacity inverter system of the 660V voltage class is described. The parallel operation of the IGBT and power stack for 1.5MVA medium power inverter system's design is applied. The results of the parallel operation are described in this paper. The designed stack capacity for parallel operation is 800kVA class. For 1.5MVA inverter system, the 800kVA stack is applied with 2 parallel configurations. The 800kVA stack is designed with 3 parallel configurations of the IGBT Module. In this paper, the feasibility for easy capacity enlargement series in the medium power inverter by applying the parallel operation of the IGBT and power stack is verified. The experimental results show the good characteristics for the parallel operation of the IGBT and power stack.

  • PDF

Static Behavior Characteristics of Disc Spring Stacks (적층 접시스프링의 정적 거동 특성)

  • Kim, Youngheub;Cho, Seunghyun;Park, Dong Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.47-53
    • /
    • 2013
  • The wide application of disc springs to the designing of mechanical products with space limit is mainly attributable to their property of sustaining large axial load with small displacement. Due to the impediments in expecting the final results caused by the significant differences existing between a single unit and a stacked form, the force-displacement characteristics of a single disc spring and stacked disc springs are mainly examined in this study. In particular, the hysteresis of the series stack and the parallel stack will be investigated through the FE analysis and the analytical results will finally be compared with the acquired experimental data. In the final result, the analytical results were in accordance with the experimental data.

A Study on SCR of New Structure with High Holding Voltage Characteristics by Applying Series Connected-NPN and N-Stack Technology (Series Connected-NPN 및 N-Stack기술 적용을 통하여 높은 홀딩전압특성을 갖는 새로운 구조의 SCR에 관한 연구)

  • Seo, Jeong-Ju;Kwon, Sang-Wook;Do, Kyoung-Il;Lee, Byung-Seok;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.338-341
    • /
    • 2019
  • In this paper, we propose a novel ESD device with improved characteristics of LVTSCR, which is a representative ESD protection device, and verify the N-stack technology for design optimized for each required voltage of a specific application. The characteristics of the holding voltage and the trigger voltage, which are the main parameters, are examined and the temperature characteristic, which is an indicator of the tolerance characteristic, is also verified. well region and a parasitic NPN to form a series-connected structure. We used synopsys' T-cad simulation tool for characterization.

PZT stack actuator-based hybrid mount system for mitigating micro-vibration of vibration isolation table (제진 테이블의 미진동 저감을 위한 PZT stack 가력기 기반 복합형 마운트 시스템)

  • Moon, Yeong-Jong;Jang, Dong-Doo;Moon, Seok-Jun;Choi, Sang-Min;Jung, Hyung-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.292-298
    • /
    • 2009
  • This paper investigates the control performance of the proposed hybrid mount system for vibration isolation table. The hybrid mount system consists of an air spring as a passive device and a PZT stack actuator as an active device in series. The feasibility of the PZT stack actuator as an active actuator was examined through the simple experiments. After that, a series of numerical simulations were carried out to evaluate the control performance of the proposed hybrid mount system. The equations of motion of the table with a set of hybrid mount systems consisting of four devices are derived. The air spring is considered as a 1 spring and 1 dashpot elements, and PID control algorithm is adopted to estimate the control force. The results of the numerical simulations presents that the proposed hybrid mount system could be the promising control system for vibration isolation table.

  • PDF

Improving the Stability of Series-Connected Solid Oxide Fuel Cells by Modifying the Electrolyte Composition

  • Kim, Young Je;Lim, Hyung-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.159-165
    • /
    • 2021
  • YSZ based anode supported solid oxide fuel cells (SOFCs) were prepared, and two cells with different electrolyte thicknesses were connected in series for the simulation of a cell-imbalanced fuel cell stack. Pure YSZ cells in a series connection exhibited a rapid degradation when a thick electrolyte cell was operated under a negative voltage. On the other hand, ceria added-YSZ cells in a series connection were stable under similar operating conditions, and the power density and impedance were about the same as those before tests. The improved stability was due to the reduction of internal partial pressure in the electrolyte by locally increasing the electronic conduction. Thus, we propose a new protection method, i.e., the local addition of ceria in the YSZ electrolyte, to extend the lifetime of a cell-imbalanced SOFC stack.

The Effect of Stack Clamping Pressure on the Performance of a Miniature PEMFC Stack (소형 고분자 연료전지 스택의 체결압력에 따른 성능 특성)

  • Kim, Byung-Ju;Yim, Sung-Dae;Sohn, Young-Jun;Kim, Chang-Soo;Yang, Tae-Hyun;Kim, Young-Chai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.499-504
    • /
    • 2009
  • The effect of gas diffusion layer (GDL) compression caused by different stack clamping pressures on fuel cell performance was experimentally studied in a miniature 5-cell proton exchange membrane fuel cell (PEMFC) stack. Three stacks with different GDL compressions, 15%, 35% and 50%, were prepared using SGL 10BC carbon fiber felt GDL and Gore 57 series MEA. The PEMFC stack performance and the stack stability were enhanced with increasing stack clamping pressure resulting in the best performance and stability for the stack with higher GDL compressions up to 50%. The excellent performance of the stack with high GDL compression was mainly due to the reduced contact resistance between GDL and bipolar plate in the stack, while reduced gas permeability of the excessively compressed GDL in the stack hardly affected the stack performance. The high stack clamping pressure also resulted in excessive GDL compression under the rib areas of bipolar plate and large GDL intrusion into the channels of the plate, which reduced the by-pass flow in the channels and increase gas pressure drop in the stack. It seems that these phenomena in the highly compressed stack enhance the water management in the stack and lead to the high stack stability.

Fabrication and Cell Properties of Flattened Tube Segmented-in-Series Solid Oxide Fuel Cell-Stack Using Decalcomania Paper (전사지를 이용한 다전지식 평관형 고체산화물 연료전지 제작 및 셀 특성)

  • An, Yong-Tae;Ji, Mi-Jung;Park, Sun-Min;Shin, Sang-Ho;Hwang, Hae-Jin;Choi, Byung-Hyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.206-210
    • /
    • 2013
  • In the segmented-in-series solid-oxide fuel cells (SIS-SOFCs), fabrication techniques which use decalcomania paper have many advantages, i.e., an increased active area of the electrode; better interfacial adhesion property between the anode, electrolyte and cathode; and improved layer thickness uniformity. In this work, a cell-stack was fabricated on porous ceramic flattened tube supports using decalcomania paper, which consists of an anode, electrolyte, and a cathode. The anode layer was $40{\mu}m$ thick, and was porous. The electrolyte layers exhibited a uniform thickness of about $20{\mu}m$ with a dense structure. Interfacial adhesion was improved due to the dense structure. The cathode layers was $30{\mu}m$ thick with porous structure, good adhesion to the electrolyte. The ohmic resistance levels at 800, 750 and $700^{\circ}C$ were measured, showing values of 1.49, 1.58 and $1.65{\Omega}{\cdot}cm^2$, respectively. The polarization resistances at 800, 750 and $700^{\circ}C$ were measured to be 1.63, 2.61 and $4.17cm^2$, respectively. These lower resistance values originated from the excellent interfacial adhesion between the anode, electrolyte and cathode. In a two-cell-stack SOFC, open-circuit voltages(OCVs) of 1.915, 1.942 and 1.957 V and maximum power densities(MPD) of 289.9, 276.1 and $220.4mW/cm^2$ were measured at 800, 750 and $700^{\circ}C$, respectively. The proposed fabrication technique using decalcomania paper was shown to be feasible for the easy fabrication of segmented-in-series flattened tube SOFCs.

Design of a Heat Release System for Fuel Cell Vehicles (연료전지 자동차 열방출 시스템의 설계)

  • Kim, Sung-Chul;Park, Min-Su;Jung, Seung-Hun;Yoon, Seok-Ho;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.545-548
    • /
    • 2005
  • There is a close relation between the heat generation in the fuel cell stack and the fuel cell performance. In PEM fuel Gell vehicles, the stack coolant temperature is about $65^{\circ}C$, which is far lower than that for general automobile engine. Therefore, it is hard to release heat generated in the stack by using a radiator of limited size because of the reduced temperature difference between the coolant and the ambient air. In this study, indirect stack cooling system using $CO_2$ heat pump was designed and its stack cooling performance in releasing heat to the ambient was investigated. This work focuses on a series of processes that grasp the relation among the fuel cell power, the radiator capacity and the stack temperature. The purpose of this work is to find out a way to properly release sufficient amount of heat through the finite sized radiator, so that the stack power general ion can not be deteriorated due to the stack temperature increase. The optimization between the compressor power consumption and the fuel cel1 output power can be carried out to maximize the performance of fuel cell system.

  • PDF

Implementation of Soft-starter with Large Scale Power Stack for High Voltage Induction Motor Driving (고압 유도전동기의 구동을 위한 소프트-스타터의 대용량 파워스텍 구현)

  • Ryu, Doo-young;Jeon, Hee-jong;Shon, Jin-geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.88-93
    • /
    • 2016
  • Soft starters are used with large induction motors in blowers, fans, pumps and the crane hoist drives. AC voltage controllers are used as soft starters in induction motors for starting and to adjust its speed. Soft-starter starting system uses phase control method of input electric source through the setting of the thyristor(SCR) firing angle ${\alpha}$, and it can control input electric source stably and continuously from beginning of starting to ending of starting. In this paper, it is verified that power stack of high-voltage with SCR series system possesses dielectric strength and input electric source is controlled stably by phase control. Especially, from the driving experimental of proposed soft-starter operating, a smoothing acceleration and inrush current decrease can be achieved by the series SCR trigger.

Design of a Heat Release System for Fuel Cell Vehicles (연료전지 자동차 열방출 시스템의 설계)

  • Kim, Min-Soo;Kim, Sung-Chul;Park, Min-Su;Jung, Seung-Hun;Yoon, Seok-Ho
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.49-54
    • /
    • 2005
  • There is close relation between the heat generation in the fuel cell stack and the fuel performance. In PEM fuel cell vehicles, the stack coolant temperature is about $65^{\circ}C$, which is far lower than that for general automobile engine. Therefore, it is hard to release heat generated in the stack by using a radiator of limited size because of the reduced temperature difference between the coolant and the ambient air. In this study, indirect stack cooling system using $CO_2$ heat pump was designed and its stack cooling performance in releasing heat to the ambient was investigated. This work focuses on a series of processes that grasp the relation among the fuel cell power, the radiator capacity and the stack temperature. The purpose of this work is to find out a way to properly release sufficient amount of heat through the finite sized radiator, so that the slack power generation can not be deteriorated due to the stack temperature increase. The optimization between the compressor power consumption and the fuel cell output power can be carried out to maximize the performance of fuel cell system.

  • PDF